SLLSEQ5A September 2016 – December 2016
PRODUCTION DATA.
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC1 | Supply voltage input side | GND1 – 0.3 | 6 | V | ||
VCC2 | Positive supply voltage output side | (VCC2 – GND2) | –0.3 | 35 | V | |
VEE2 | Negative supply voltage output side | (VEE2 – GND2) | –17.5 | 0.3 | V | |
V(SUP2) | Total supply output voltage | (VCC2 – VEE2) | –0.3 | 35 | V | |
V(OUTH) | Positive gate driver output voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
V(OUTL) | Negative gate driver output voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
I(OUTH) | Gate driver high output current | Gate driver high output current (maximum pulse width = 10 μs, maximum duty cycle = 0.2%) |
2.7 | A | ||
I(OUTL) | Gate driver low output current | Gate driver high output current (maximum pulse width = 10 μs, maximum duty cycle = 0.2%) |
5.5 | A | ||
V(LIP) | Voltage at IN+, IN–, FLT, RDY, RST | GND1 - 0.3 | VCC1 + 0.3 | V | ||
I(LOP) | Output current of FLT, RDY | 10 | mA | |||
V(DESAT) | Voltage at DESAT | GND2 - 0.3 | VCC2 + 0.3 | V | ||
V(CLAMP) | Clamp voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
TJ | Junction temperature | –40 | 150 | °C | ||
TSTG | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±4000 | V |
Charged-device model (CDM), per AEC Q100-011 | ±1500 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC1 | Supply voltage input side | 2.25 | 5.5 | V | |
VCC2 | Positive supply voltage output side (VCC2 – GND2) | 15 | 30 | V | |
VEE2 | Negative supply voltage output side (VEE2 – GND2) | –15 | 0 | V | |
V(SUP2) | Total supply voltage output side (VCC2 – VEE2) | 15 | 30 | V | |
VIH | High-level input voltage (IN+, IN–, RST) | 0.7 × VCC1 | VCC1 | V | |
VIL | Low-level input voltage (IN+, IN–, RST) | 0 | 0.3 × VCC1 | V | |
tUI | Pulse width at IN+, IN– for full output (CLOAD = 1 nF) | 40 | ns | ||
tRST | Pulse width at RST for resetting fault latch | 800 | ns | ||
TA | Ambient temperature | –40 | 125 | °C |
THERMAL METRIC(1) | ISO5452-Q1 | UNIT | |
---|---|---|---|
DW (SOIC) | |||
16 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 99.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 48.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 56.5 | °C/W |
ψJT | Junction-to-top characterization parameter | 29.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 56.5 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Maximum power dissipation(1) | 1255 | mW | |||
PID | Maximum input power dissipation | 175 | mW | |||
POD | Maximum output power dissipation | 1080 | mW |
PARAMETER | TEST CONDITIONS | VALUE | UNIT | |
---|---|---|---|---|
GENERAL | ||||
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | >8 | mm |
CPG | External creepage(1) | Shortest terminal-to-terminal distance across the package surface | >8 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >21 | μm |
CTI | Tracking resistance (comparative tracking index) | DIN EN 60112 (VDE 0303-11); IEC 60112; | >600 | V |
Material Group | According to IEC 60664-1; UL 746A | I | ||
Overvoltage category (according to IEC 60664-1) | Rated Mains Voltage ≤ 300 VRMS | I-IV | ||
Rated Mains Voltage ≤ 600 VRMS | I-III | |||
Rated Mains Voltage ≤ 1000 VRMS | I-II | |||
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2) | ||||
VIORM | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 1420 | VPK |
VIOWM | Maximum isolation working voltage | AC voltage. Time dependent dielectric breakdown (TDDB) Test, see Figure 1 | 1000 | VRMS |
DC voltage | 1420 | VDC | ||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM, t = 60 s (qualification), t = 1 s (100% production) | 8000 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Test method per IEC 60065, 1.2/50 μs waveform, VTEST = 1.6 × VIOSM = 10000 VPK (qualification)(3) | 6250 | VPK |
qpd | Apparent charge(4) | Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 1704 VPK, tm = 10 s | ≤5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 2272 VPK, tm = 10 s | ≤5 | |||
Method b1: At routine test (100% production) and preconditioning (type test), Vini = VIOTM, tini = 60 s; Vpd(m) = 1.875× VIORM = 2663 VPK, tm = 10 s | ≤5 | |||
RIO | Isolation resistance, input to output(5) | VIO = 500 V, TA = 25°C | > 1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ 125°C | > 1011 | Ω | ||
VIO = 500 V at TS = 150°C | > 109 | Ω | ||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 x sin (2πft), f = 1 MHz | 1 | pF |
Pollution degree | 2 | |||
UL 1577 | ||||
VISO | Withstanding Isolation voltage | VTEST = VISO, t = 60 s (qualification), VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) |
5700 | VRMS |
VDE | CSA | UL | CQC | TUV |
---|---|---|---|---|
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 |
Certified according to CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 | Certified according to UL 1577 Component Recognition Program | Certified according to GB 4943.1-2011 | Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 |
Reinforced Insulation Maximum Transient isolation voltage, 8000 VPK; Maximum surge isolation voltage, 6250 VPK, Maximum repetitive peak isolation voltage, 1420 VPK |
Isolation Rating of 5700 VRMS; Reinforced insulation per CSA 60950- 1- 07+A1+A2 and IEC 60950-1 (2nd Ed.), 800 VRMS max working voltage (pollution degree 2, material group I) ; 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage |
Single Protection, 5700 VRMS (1) | Reinforced Insulation, Altitude ≤ 5000m, Tropical climate, 400 VRMS maximum working voltage | 5700 VRMS Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS 5700 VRMS Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 800 VRMS |
Certification completed Certificate number: 40040142 |
Master contract number: 220991 | Certification completed File number: E181974 |
Certification completed Certificate number: CQC16001141761 |
Certification completed Client ID number: 77311 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IS | Safety input, output or supply current | RθJA = 99.6°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 2 | 456 | mA | ||
RθJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2 | 346 | |||||
RθJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2 | 228 | |||||
RθJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see Figure 2 | 484 | |||||
RθJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see Figure 2 | 42 | |||||
PS | Safety input, output, or total power | RθJA = 99.6°C/W, TJ = 150°C, TA = 25°C, see Figure 3 | 1255(1) | mW | ||
TS | Safety temperature | 150 | °C |
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOLTAGE SUPPLY | |||||||
VIT+(UVLO1) | Positive-going UVLO1 threshold voltage input side (VCC1 – GND1) | 2.25 | V | ||||
VIT-(UVLO1) | Negative-going UVLO1 threshold voltage input side (VCC1 – GND1) | 1.7 | V | ||||
VHYS(UVLO1) | UVLO1 Hysteresis voltage (VIT+ – VIT–) input side | TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 0.2 | V | |||
VIT+(UVLO2) | Positive-going UVLO2 threshold voltage output side (VCC2 – GND2) | 13 | V | ||||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 12 | ||||||
VIT-(UVLO2) | Negative-going UVLO2 threshold voltage output side (VCC2 – GND2) | 9.5 | V | ||||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 11 | ||||||
VHYS(UVLO2) | UVLO2 Hysteresis voltage (VIT+ – VIT–) output side | TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 1 | V | |||
IQ1 | Input supply quiescent current | 4.5 | mA | ||||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 2.8 | ||||||
IQ2 | Output supply quiescent current | 6 | mA | ||||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 3.6 | ||||||
LOGIC I/O | |||||||
VIT+(IN,RST) | Positive-going input threshold voltage (IN+, IN–, RST) | 0.7 × VCC1 | V | ||||
VIT-(IN,RST) | Negative-going input threshold voltage (IN+, IN–, RST) | 0.3 × VCC1 | V | ||||
VHYS(IN,RST) | Input hysteresis voltage (IN+, IN–, RST) | TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 0.15 × VCC1 | V | |||
IIH | High-level input leakage at (IN+)(1) | IN+ = VCC1, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
100 | µA | |||
IIL | Low-level input leakage at (IN–, RST)(2) | IN– = GND1, RST = GND1, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | –100 | µA | |||
IPU | Pullup current of FLT, RDY | V(RDY) = GND1, V(FLT) = GND1, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
100 | µA | |||
VOL | Low-level output voltage at FLT, RDY | I(FLT) = 5 mA | 0.2 | V | |||
GATE DRIVER STAGE | |||||||
V(OUTPD) | Active output pulldown voltage | I(OUTH/L) = 200 mA, VCC2 = open | 2 | V | |||
V(OUTH) | High-level output voltage | I(OUTH) = –20 mA | VCC2 – 0.5 | V | |||
I(OUTH) = –20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | VCC2 – 0.24 | ||||||
V(OUTL) | Low-level output voltage | I(OUTL) = 20 mA | VEE2 + 50 | mV | |||
I(OUTL) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | VEE2 + 13 | ||||||
I(OUTH) | High-level output peak current | IN+ = high, IN– = low, V(OUTH) = VCC2 – 15 V | 1.5 | A | |||
IN+ = high, IN– = low, V(OUTH) = VCC2 – 15 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
2.5 | ||||||
I(OUTL) | Low-level output peak current | IN+ = low, IN– = high, V(OUTL) = VEE2 + 15 V | 3.4 | A | |||
IN+ = low, IN– = high, V(OUTL) = VEE2 + 15 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
5 | ||||||
I(OLF) | Low level output current during fault condition | TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 130 | mA | |||
ACTIVE MILLER CLAMP | |||||||
V(CLP) | Low-level clamp voltage | I(CLP) = 20 mA | VEE2 + 0.08 | V | |||
I(CLP) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
VEE2 + 0.015 | ||||||
I(CLP) | Low-level clamp current | V(CLAMP) = VEE2 + 2.5 V | 1.6 | 3.3 | A | ||
V(CLAMP) = VEE2 + 2.5 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 2.5 | ||||||
V(CLTH) | Clamp threshold voltage | 1.6 | 2.5 | V | |||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 2.1 | ||||||
SHORT CIRCUIT CLAMPING | |||||||
V(CLP_OUTH) | Clamping voltage (VOUTH – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTH) = 500 mA |
1.1 | 1.3 | V | ||
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTH) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | |||||||
V(CLP_OUTL) | Clamping voltage (VOUTL – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTL) = 500 mA |
1.3 | 1.5 | V | ||
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTL) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | |||||||
V(CLP_CLAMP) | Clamping voltage (VCLP – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(CLP) = 500 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 1.3 | V | |||
Clamping voltage at CLAMP | IN+ = High, IN– = Low, I(CLP) = 20 mA | 1.1 | V | ||||
IN+ = High, IN– = Low, I(CLP) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
0.7 | ||||||
V(CLP_OUTL) | Clamping voltage at OUTL (VCLP - VCC2) |
IN+ = High, IN– = Low, I(OUTL) = 20 mA | 1.1 | V | |||
IN+ = High, IN– = Low, I(OUTL) = 20 mA, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
0.7 | ||||||
DESAT PROTECTION | |||||||
I(CHG) | Blanking capacitor charge current | V(DESAT) – GND2 = 2 V | 0.42 | 0.58 | mA | ||
V(DESAT) – GND2 = 2 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 0.5 | ||||||
I(DCHG) | Blanking capacitor discharge current | V(DESAT) – GND2 = 6 V | 9 | mA | |||
V(DESAT) – GND2 = 6 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 14 | ||||||
V(DSTH) | DESAT threshold voltage with respect to GND2 | 8.3 | 9.5 | V | |||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 9 | ||||||
V(DSL) | DESAT voltage with respect to GND2, when OUTH/L is driven low | 0.4 | 1 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tr | Output signal rise time, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 12 | 35 | ns | |
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 18 | |||||
tf | Output signal fall time, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 12 | 37 | ns | |
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 20 | |||||
tPLH, tPHL | Propagation delay, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 76 | 110 | ns | |
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | ||||||
tsk-p | Pulse skew |tPHL – tPLH|, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 20 | ns | ||
tsk-pp | Part-to-part skew, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 30(1) | ns | ||
tGF | Glitch filter on IN+, IN–, RST, see Figure 44, Figure 45 and Figure 46 | CLOAD = 1 nF | 20 | 40 | ns | |
CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 30 | |||||
tDS (90%) | DESAT sense to 90% VOUTH/L delay, see Figure 44, Figure 45 and Figure 46 | CLOAD = 10 nF | 760 | ns | ||
CLOAD = 10 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 553 | |||||
tDS (10%) | DESAT sense to 10% VOUTH/L delay, see Figure 44, Figure 45 and Figure 46 | CLOAD = 10 nF | 3.5 | μs | ||
CLOAD = 10 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 2 | |||||
tDS (GF) | DESAT glitch filter delay | CLOAD = 1 nF, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 330 | ns | ||
tDS (FLT) | DESAT sense to FLT-low delay, see Figure 46 | 1.4 | μs | |||
tLEB | Leading edge blanking time, see Figure 44 and Figure 45 | 310 | 480 | ns | ||
TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V |
400 | |||||
tGF(RSTFLT) | Glitch filter on RST for resetting FLT | 300 | 800 | ns | ||
CI | Input capacitance(2) | VI = VCC1 / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC1 = 5 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 2 | pF | ||
CMTI | Common-mode transient immunity, see Figure 47 | VCM = 1500 V | 50 | kV/μs | ||
VCM = 1500 V, TA = 25°C, VCC1 = 5 V, VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V | 100 |
TA up to 150°C | Stress-voltage frequency = 60 Hz |
Unipolar: VCC2 – VEE2 = VCC2 – GND2 |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 100 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 10 Ω | RGL = 5Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 15 V | DESAT = 220pF |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 30 V | DESAT = 220pF |
IN+ = High | IN– = Low |
No CL |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
RGH = 0 Ω | RGL = 0 Ω | VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 = 15 V | DESAT = 6 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 1 nF | RGH = 10 Ω | RGL = 5Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 100 nF | RGH = 10 Ω | RGL = 5Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 15 V | DESAT = 220pF |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 30 V | DESAT = 220pF |
IN+ = Low | IN– = Low |
Input frequency = 1 kHz |
RGH = 10 Ω | RGL = 5 Ω, 20 kHz |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 = 15 V |
RGH = 0 Ω | RGL = 0 Ω | VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |