SLLSF21D September   2018  – February  2020

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics: Driver
    10. 6.10 Electrical Characteristics: Receiver
    11. 6.11 Supply Current Characteristics: Side 1(ICC1)
    12. 6.12 Supply Current Characteristics: Side 2(ICC2)
    13. 6.13 Switching Characteristics: Driver
    14. 6.14 Switching Characteristics: Receiver
    15. 6.15 Insulation Characteristics Curves
    16. 6.16 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Electromagnetic Compatibility (EMC) Considerations
      2. 8.3.2 Failsafe Receiver
      3. 8.3.3 Thermal Shutdown
      4. 8.3.4 Glitch-Free Power Up and Power Down
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Data Rate and Bus Length
        2. 9.2.2.2 Stub Length
        3. 9.2.2.3 Bus Loading
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Glitch-Free Power Up and Power Down

Communication on the bus that already exist between a master node and slave node in an RS485 network must not be disturbed when a new node is swapped in or out of the network. No glitches on the bus occur when the device is:

  • Hot plugged into the network in an unpowered state
  • Hot plugged into the network in a powered state and disabled state
  • Powered up or powered down in a disabled state when already connected to the bus

The ISO1500 device does not cause any false data toggling on the bus when powered up or powered down in a disabled state with supply ramp rates from 100 µs to 10 ms.