SLLSF86C May   2018  – March 2022

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description Continued
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  Recommended Operating Conditions
    3. 8.3  Thermal Information
    4. 8.4  Power Ratings
    5. 8.5  Insulation Specifications
    6. 8.6  Safety-Related Certifications
    7. 8.7  Safety Limiting Values
    8. 8.8  Electrical Characteristics
    9. 8.9  Supply Current Characteristics at VISOOUT = 3.3 V
    10. 8.10 Supply Current Characteristics at  VISOOUT = 5 V
    11. 8.11 Switching Characteristics at VISOOUT = 3.3 V
    12. 8.12 Switching Characteristics at VISOOUT = 5 V
    13. 8.13 Insulation Characteristics Curves
    14. 8.14 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Power Isolation
    3. 10.3 Signal Isolation
    4. 10.4 RS-485
    5. 10.5 Functional Block Diagram
    6. 10.6 Feature Description
      1. 10.6.1 Power-Up and Power-Down Behavior
      2. 10.6.2 Protection Features
      3. 10.6.3 Failsafe Receiver
      4. 10.6.4 Glitch-Free Power Up and Power Down
    7. 10.7 Device Functional Modes
    8. 10.8 Device I/O Schematics
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Data Rate, Bus Length and Bus Loading
        2. 11.2.2.2 Stub Length
        3. 11.2.2.3 Insulation Lifetime
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Receiving Notification of Documentation Updates
    3. 14.3 Support Resources
    4. 14.4 Trademarks
    5. 14.5 Electrostatic Discharge Caution
    6. 14.6 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Glitch-Free Power Up and Power Down

Communication on the bus that already exist between a master node and slave node in an RS-485 network must not be disturbed when a new node is swapped in or out of the network. No glitches on the bus should occur when the device is:

  • Hot plugged into the network in an unpowered state
  • Hot plugged into the network in a powered state and disabled state
  • Powered up or powered down in a disabled state when already connected to the bus

The ISOW14x2 devices meet above criteria and do not cause any false data toggling on the bus when powered up or powered down in a disabled state with supply ramp rates >= 50 us.