SLOA289B May   2020  – September 2021 66AK2H06 , 66AK2H12 , 66AK2H14 , ADS8588H , AMC3301 , ISO224 , ISO7740 , ISO7741 , ISO7742 , LMZ30604 , SN65LVDS047 , SN65LVDS048A , UCC12040 , UCC12050

 

  1.   Trademarks
  2. 1HVDC Power Transmission Overview and Architecture
    1. 1.1 Electrical Power - Generation, Transmission and Distribution
    2. 1.2 HVAC to HVDC Power Transmission
      1. 1.2.1 Comparison of HVDC and HVAC
      2. 1.2.2 Primary Objectives of HVDC Transmission
    3. 1.3 Working Principle of HVDC Transmission Station
    4. 1.4 Advantages of HVDC Transmission
  3. 2HVDC Transmission System (HVDC station)
    1. 2.1 HVDC Transmission Technologies
    2. 2.2 HVDC Transmission System (HVDC station) Key Components
      1. 2.2.1 Converter
      2. 2.2.2 Converter Valve Arms
        1. 2.2.2.1 Converter Phase Arms
      3. 2.2.3 Converter Transformers
      4. 2.2.4 Power Transmission Lines
      5. 2.2.5 Components for Ripple Control, Harmonic Control and Waveform Shaping
      6. 2.2.6 Protection Equipment
  4. 3HVDC transmission station - Control and Protection (C and P)
    1. 3.1 Control OF HVDC Transmission Station
      1. 3.1.1 System Control
      2. 3.1.2 Master Control
      3. 3.1.3 Station Control
      4. 3.1.4 Pole or Converter Control
      5. 3.1.5 Valve Base Control VBC (valve unit control)
    2. 3.2 HVDC Transmission Station Protection
      1. 3.2.1 Protection of AC Section of HVDC Station
      2. 3.2.2 Protection of DC Section of HVDC Station
      3. 3.2.3 Equipment Protection and Monitoring
      4. 3.2.4 Sampling and DC Fault Detection
    3. 3.3 Fault Recording and Monitoring
    4. 3.4 Control and Protection Panel
    5. 3.5 Diagnostics and Monitoring
  5. 4HVDC Transmission Control and Protection – System Level Block Diagram
  6. 5TI Solutions for HVDC Transmission Station Control and Protection
    1. 5.1 TI Products
      1. 5.1.1 Analog
      2. 5.1.2 Embedded Processing
      3. 5.1.3 Power Supply and Gate Drivers
      4. 5.1.4 High-Speed On-Board Interface and External Communication
      5. 5.1.5 Board Level Isolation and Protection
  7. 6Summary
  8. 7TI Reference Designs
  9. 8Additional References
  10. 9Revision History

Sampling and DC Fault Detection

Sampling required for HVDC applications as per IEC61869-9 standard is 96,000 Hz. Typically the fault detection is designed to be 2 µs that translates to 500,000 Hz sampling. Alternatively high speed comparators can be used for fast fault detection.