SLOS708G April   2012  – December 2017 TPA3116D2 , TPA3118D2 , TPA3130D2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 AC Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Gain Setting and Master and Slave
      2. 7.3.2  Input Impedance
      3. 7.3.3  Startup and Shutdown Operation
      4. 7.3.4  PLIMIT Operation
      5. 7.3.5  GVDD Supply
      6. 7.3.6  BSPx AND BSNx Capacitors
      7. 7.3.7  Differential Inputs
      8. 7.3.8  Device Protection System
      9. 7.3.9  DC Detect Protection
      10. 7.3.10 Short-Circuit Protection and Automatic Recovery Feature
      11. 7.3.11 Thermal Protection
      12. 7.3.12 Device Modulation Scheme
        1. 7.3.12.1 MODSEL = GND: BD-Modulation
        2. 7.3.12.2 MODSEL = HIGH: 1SPW-modulation
      13. 7.3.13 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme
      14. 7.3.14 Ferrite Bead Filter Considerations
      15. 7.3.15 When to Use an Output Filter for EMI Suppression
      16. 7.3.16 AM Avoidance EMI Reduction
    4. 7.4 Device Functional Modes
      1. 7.4.1 Mono Mode (PBTL)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Select the PWM Frequency
        2. 8.2.2.2 Select the Amplifier Gain and Master/Slave Mode
        3. 8.2.2.3 Select Input Capacitance
        4. 8.2.2.4 Select Decoupling Capacitors
        5. 8.2.2.5 Select Bootstrap Capacitors
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Heat Sink Used on the EVM
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VCC PVCC, AVCC –0.3 30 V
Input voltage, VI INPL, INNL, INPR, INNR –0.3 6.3 V
PLIMIT, GAIN / SLV, SYNC –0.3 GVDD+0.3 V
AM0, AM1, AM2, MUTE, SDZ, MODSEL –0.3 PVCC+0.3 V
Slew rate, maximum(2) AM0, AM1, AM2, MUTE, SDZ, MODSEL 10 V/ms
Operating free-air temperature, TA –40 85 °C
Operating junction temperature , TJ –40 150 °C
Storage temperature, Tstg –40 125 °C
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
100 kΩ series resistor is needed if maximum slew rate is exceeded.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. .

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Supply voltage PVCC, AVCC 4.5 26 V
VIH High-level input voltage AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL 2 V
VIL Low-level input voltage AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL 0.8 V
VOL Low-level output voltage FAULTZ, RPULL-UP = 100 kΩ, PVCC = 26 V 0.8 V
IIH High-level input current AM0, AM1, AM2, MUTE, SDZ, MODSEL (VI = 2 V, VCC = 18 V) 50 µA
RL(BTL) Minimum load Impedance Output filter: L = 10 µH, C = 680 nF TPA3116D2, TPA3118D2 3.2 4 Ω
TPA3130D2 5.6 8
RL(PBTL) Output filter: L = 10 µH, C = 1 µF TPA3116D2, TPA3118D2 1.6
TPA3130D2 3.2 4
Lo Output-filter Inductance Minimum output filter inductance under short-circuit condition 1 µH

Thermal Information

THERMAL METRIC(1) TPA3130D2 TPA3118D2 TPA3116D2 UNIT
DAP(2) DAP(3) DAD(4)
32 PINS 32 PINS 32 PINS
RθJA Junction-to-ambient thermal resistance 36 22 14 °C/W
ψJT Junction-to-top characterization parameter 0.4 0.3 1.2
ψJB Junction-to-board characterization parameter 5.9 4.7 5.7
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
For the PCB layout please see the TPA3130D2EVM user guide.
For the PCB layout please see the TPA3118D2EVM user guide.
The heat sink drawing used for the thermal model data are shown in the application section, size: 14mm wide, 50mm long, 25mm high.

DC Electrical Characteristics

TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
| VOS | Class-D output offset voltage (measured differentially) VI = 0 V, Gain = 36 dB 1.5 15 mV
ICC Quiescent supply current SDZ = 2 V, No load or filter, PVCC = 12 V 20 35 mA
SDZ = 2 V, No load or filter, PVCC = 24 V 32 50
ICC(SD) Quiescent supply current in shutdown mode SDZ = 0.8 V, No load or filter, PVCC = 12 V <50 µA
SDZ = 0.8 V, No load or filter, PVCC = 24 V 50 400
rDS(on) Drain-source on-state resistance, measured pin to pin PVCC = 21 V, Iout = 500 mA, TJ = 25°C 120
G Gain (BTL) R1 = 5.6 kΩ, R2 = Open 19 20 21 dB
R1 = 20 kΩ, R2 = 100 kΩ 25 26 27
R1 = 39 kΩ, R2 = 100 kΩ 31 32 33 dB
R1 = 47 kΩ, R2 = 75 kΩ 35 36 37
G Gain (SLV) R1 = 51 kΩ, R2 = 51 kΩ 19 20 21 dB
R1 = 75 kΩ, R2 = 47 kΩ 25 26 27
R1 = 100 kΩ, R2 = 39 kΩ 31 32 33 dB
R1 = 100 kΩ, R2 = 16 kΩ 35 36 37
ton Turn-on time SDZ = 2 V 10 ms
tOFF Turn-off time SDZ = 0.8 V 2 µs
GVDD Gate drive supply IGVDD < 200 µA 6.4 6.9 7.4 V
VO Output voltage maximum under PLIMIT control V(PLIMIT) = 2 V; VI = 1 Vrms 6.75 7.90 8.75 V

AC Electrical Characteristics

TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
KSVR Power supply ripple rejection 200 mVPP ripple at 1 kHz, Gain = 20 dB, Inputs AC-coupled to GND –70 dB
PO Continuous output power THD+N = 10%, f = 1 kHz, PVCC = 14.4 V 25 W
THD+N = 10%, f = 1 kHz, PVCC = 21 V 50
THD+N Total harmonic distortion + noise VCC = 21 V, f = 1 kHz, PO = 25 W (half-power) 0.1%
Vn Output integrated noise 20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB 65 µV
–80 dBV
Crosstalk VO = 1 Vrms, Gain = 20 dB, f = 1 kHz –100 dB
SNR Signal-to-noise ratio Maximum output at THD+N < 1%, f = 1 kHz, Gain = 20 dB, A-weighted 102 dB
fOSC Oscillator frequency AM2=0, AM1=0, AM0=0 376 400 424 kHz
AM2=0, AM1=0, AM0=1 470 500 530
AM2=0, AM1=1, AM0=0 564 600 636
AM2=0, AM1=1, AM0=1 940 1000 1060
AM2=1, AM1=0, AM0=0 1128 1200 1278
AM2=1, AM1=0, AM0=1 Reserved
AM2=1, AM1=1, AM0=0
AM2=1, AM1=1, AM0=1
Thermal trip point 150+ °C
Thermal hysteresis 15 °C
Over current trip point TPA3130D2 4.5 A
TPA3118D2, TPA3116D2 7.5

Typical Characteristics

fs = 400 kHz, BD Mode (unless otherwise noted)
TPA3116D2 TPA3118D2 TPA3130D2 G002_THDvFreq6V4R.png Figure 1. Total Harmonic Distortion + Noise (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G004_THDvFreq24V4R.png Figure 3. Total Harmonic Distortion + Noise (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G006_THDvFreq24V8R.png Figure 5. Total Harmonic Distortion + Noise (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G009_THDvPo12V4R.png Figure 7. Total Harmonic Distortion + Noise (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G011_THDvPo12V8R.png Figure 9. Total Harmonic Distortion + Noise (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G013_PovPlim24V4R.png Figure 11. Output Power (BTL) vs Plimit Voltage
TPA3116D2 TPA3118D2 TPA3130D2 G015_PovPVCC_8R.png Figure 13. Maximum Output Power (BTL) vs Supply Voltage
TPA3116D2 TPA3118D2 TPA3130D2 G017_EffvPo6V12V24V8R.png Figure 15. Power Efficiency (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G021_XtalkvFreq24V8R.png Figure 17. Crosstalk vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G023_kSVRvFreq12V8R.png Figure 19. Supply Ripple Rejection Ratio (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G025_THDvPo12V2R_PBTL.png Figure 21. Total Harmonic Distortion + Noise (PBTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G028_EffvPo6V12V24V2R_PBTL.png Figure 23. Power Efficiency (PBTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G032_THDvPo24V3R_PBTL.png Figure 25. Total Harmonic Distortion + Noise (PBTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G003_THDvFreq12V4R.png Figure 2. Total Harmonic Distortion + Noise (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G005_THDvFreq12V8R.png Figure 4. Total Harmonic Distortion + Noise (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G008_THDvPo6V4R.png Figure 6. Total Harmonic Distortion + Noise (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G010_THDvPo24V4R.png Figure 8. Total Harmonic Distortion + Noise (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G012_THDvPo24V8R.png Figure 10. Total Harmonic Distortion + Noise (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G014_Gain_PhasevFreq12V4R.png Figure 12. Gain/Phase (BTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G016_PovPVCC_4R_26VMax.png Figure 14. Maximum Output Power (BTL) vs Supply Voltage
TPA3116D2 TPA3118D2 TPA3130D2 G018_EffvPo6V12V24V4R.png Figure 16. Power Efficiency (BTL) vs Output Power
TPA3116D2 TPA3118D2 TPA3130D2 G022_XtalkvFreq12V4R.png Figure 18. Crosstalk vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G024_THDvFreq12V2R_PBTL.png Figure 20. Total Harmonic Distortion + Noise (PBTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G027_PovPVCC26V2R_PBTL.png Figure 22. Maximum Output Power (PBTL) vs Supply Voltage
TPA3116D2 TPA3118D2 TPA3130D2 G030_kSVRvFreq12V2R_PBTL.png Figure 24. Supply Ripple Rejection Ratio (PBTL) vs Frequency
TPA3116D2 TPA3118D2 TPA3130D2 G034_PovPVCC26V3R_PBTL.png Figure 26. Maximum Output Power (PBTL) vs Supply Voltage