SLVAES1A June   2020  – May 2022 DRV8300

 

  1.   Trademarks
  2. 1Motor Considerations and Why Brushless DC Motors?
  3. 2Motor Driver Architecture
    1. 2.1 Gate Driver vs Integrated FET Driver: Power, Voltage, and Current Requirements
    2. 2.2 Three Use Cases: Speed, Torque, or Position:
    3. 2.3 Control Methods: Trap, Sine, or FOC
      1. 2.3.1 Trapezoidal
      2. 2.3.2 Sinusoidal
      3. 2.3.3 Field-Oriented Control
    4. 2.4 Sensored Versus Sensorless
      1. 2.4.1 Sensored
      2. 2.4.2 Sensorless
    5. 2.5 Current Sense Amplifiers
    6. 2.6 Interface
    7. 2.7 Power Integration
    8. 2.8 100% Duty Cycle Support
  4. 3Texas Instruments' Brushless-DC Motor Drivers
    1. 3.1 Gate Drivers: DRV8x and DRV3x family
      1. 3.1.1 DRV8x Family
      2. 3.1.2 DRV3x Family
    2. 3.2 Integrated MOSFET: DRV831x Family
    3. 3.3 Control and Gate Driver: MCx Family
    4. 3.4 Full Integration: MCx831x and DRV10x Family
      1. 3.4.1 MCx831x Family
      2. 3.4.2 DRV10x family
  5. 4Conclusion
  6. 5Revision History

Abstract

The usage of Brushless-DC (BLDC) motors is becoming more commonplace in the automotive and industrial markets. Although more challenging to spin, Texas Instruments' BLDC motor drivers make spinning BLDC motors as simple as possible by reducing design complexity while improving system efficiency. TI offers a diverse portfolio of BLDC motor drivers that support various architectures, integration, and control methods to best suit a wide range of applications. The portfolio is grouped into driver, control, and safety families that each include key technologies. These technologies enable developers to design smaller and more efficient systems, decrease design complexity, and meet functional safety standards and certifications.