SLVS496D SEPTEMBER   2003  – August 2016 TPS65100 , TPS65101 , TPS65105

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Main Boost Converter
      2. 8.3.2  VCOM Buffer
      3. 8.3.3  Enable and Power-On Sequencing
      4. 8.3.4  Positive Charge Pump
      5. 8.3.5  Negative Charge Pump
      6. 8.3.6  Linear Regulator Controller
      7. 8.3.7  Soft Start
      8. 8.3.8  Fault Protection
      9. 8.3.9  Thermal Shutdown
      10. 8.3.10 Linear Regulator Controller
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable and Disable
      2. 8.4.2 Fault Mode
        1. 8.4.2.1 Overvoltage Protection
        2. 8.4.2.2 Short-Circuit Protection
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Boost Converter Design Procedure
          1. 9.2.2.1.1 Inductor Selection
          2. 9.2.2.1.2 Output Capacitor Selection
          3. 9.2.2.1.3 Input Capacitor Selection
          4. 9.2.2.1.4 Rectifier Diode Selection
          5. 9.2.2.1.5 Converter Loop Design and Stability
          6. 9.2.2.1.6 Design Procedure Quick Steps
          7. 9.2.2.1.7 Setting the Output Voltage and Selecting the Feedforward Capacitor
        2. 9.2.2.2 Negative Charge Pump
        3. 9.2.2.3 Positive Charge Pump
        4. 9.2.2.4 VCOM Buffer
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 Notebook Supply
      2. 9.3.2 Monitor Supply
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Performance
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resource
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltages on pin VIN(2) –0.3 6 V
Voltages on pin SUP, PG (2) –0.3 15.5 V
Voltage on pin FB1, FB2, FB3, FB4 –0.3 5.5 V
Voltages on pin EN, MODE, ENR(2) –0.3 VI + 0.3 V
Voltage on VCOMIN –0.3 14 V
Voltage on pin SW(2) –0.3 20 V
Voltage on pin DRV –0.3 15 V
Voltage on pin REF –0.3 4 V
Voltage on pin BASE –0.3 5.5 V
Voltage on pin VOUT3 –0.3 30 V
Voltage on pin VCOM –0.3 15 V
Voltage on pin C1+, C2+ –0.3 30 V
Voltage on pin C1–, C2– –0.3 15 V
Continuous power dissipation See Dissipation Ratings
Operating junction temperature, TJ –40 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VI Input voltage 2.7 5.8 V
L Inductor(1) 4.7 µH
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
(1) See the Detailed Design Procedure for further information.

7.4 Thermal Information

THERMAL METRIC(1) TPS6510x UNIT
PWP (HTSSOP) RGE (VQFN)
24 PINS 24 PINS
RθJA Junction-to-ambient thermal resistance 37.2 33 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.9 35.3 °C/W
RθJB Junction-to-board thermal resistance 16.4 10.7 °C/W
ψJT Junction-to-top characterization parameter 0.4 0.4 °C/W
ψJB Junction-to-board characterization parameter 16.2 10.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.1 1.8 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

VI = 3.3 V, EN = VI, VO1 = 10 V, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VI Input voltage range 2.7 5.8 V
II(VIN) Quiescent current (VIN) ENR = VCOMIN = GND, VO3 = 2 × VO1
Boost converter not switching
0.7 0.9 mA
II(QCharge) Charge pump quiescent current (SUP) VO1 = SUP = 10 V, VO3 = 2 × VO1 1.7 2.7 mA
VO1 = SUP = 10 V, VO3 = 3 × VO1 3.9 6
II(QVCOM) VCOM quiescent current (SUP) ENR = GND, VO1 = SUP = 10 V 750 1300 µA
II(QEN) LDO controller quiescent current (VIN) ENR = VI, EN = GND 300 800 µA
II(sd) Shutdown current (VIN) EN = ENR = GND 1 10 µA
VIT– Undervoltage lockout threshold VI falling 2.2 2.4 V
Thermal shutdown temperature threshold TJ rising 160 °C
LOGIC SIGNALS
VIH High-level input voltage (EN, ENR) 1.5 V
VIL Low-level input voltage (EN, ENR) 0.4 V
IIH , IIL Input leakage current EN = ENR = GND or VI 0.01 0.1 µA
MAIN BOOST CONVERTER VO1
VO1 Output voltage range 5 15 V
VO1 – VI Minimum input to output
voltage difference
1 V
V(REF) Reference output voltage (REF) 1.205 1.213 1.219 V
Vref Feedback regulation voltage (FB1) 1.136 1.146 1.154 V
IIB Feedback input bias current 10 100 nA
rDS(on) N-MOSFET on-resistance (Q1) VO1 = 10 V, I(sw) = 500 mA 195 290 mΩ
VO1 = 5 V, I(sw) = 500 mA 285 420
ILIM N-MOSFET switch current limit (Q1) TPS65100, TPS65101 1.6 2.3 2.6 A
TPS65105 0.96 1.37 1.56 A
rDS(on) P-MOSFET on-resistance (Q2) VO1 = 10 V, I(sw) = 100 mA 9 15 Ω
VO1 = 5 V, I(sw) = 100 mA 14 22
Maximum P-MOSFET peak switch current 1 A
I(SW)(off) Off-state current (SW) V(sw) = 15 V 1 10 µA
fOSC Oscillator frequency 0°C TA ≤ 85°C 1.295 1.6 2.1 MHz
–40°C TA ≤ 85°C 1.191 1.6 2.1
ΔVO(ΔVI) Line regulation 2.7 V VI ≤ 5.7 V, Iload = 100 mA 0.012 %/V
ΔVO(ΔIO) Load regulation 0 mA IO ≤ 300 mA 0.2 %/A
NEGATIVE CHARGE PUMP VO2
VO2 Output voltage range –2 V
V(REF) Reference output voltage (REF) 1.205 1.213 1.219 V
Vref Feedback regulation voltage (FB2) –36 0 36 mV
IIB Feedback input bias current 10 100 nA
rDS(on) Q8 P-Channel switch rDS(ON) IO = 20 mA 4.3 8 Ω
Q9 N-Channel switch rDS(ON) 2.9 4.4
IOM Maximum output current 20 mA
ΔVO(ΔVI) Line regulation 7 V VO1 15 V, IO = 10 mA, VO2 = –5 V 0.09 %/V
ΔVO(ΔIO) Load regulation 1 mA IO ≤ 20 mA, VO2 = –5 V 0.126 %/mA
POSITIVE CHARGE PUMP VO3
VO3 Output voltage range 30 V
V(REF) Reference output voltage 1.205 1.213 1.219 V
Vref Feedback regulation voltage (FB3) 1.187 1.214 1.238 V
IIB Feedback input bias current 10 100 nA
rDS(on) Q3 P-Channel switch rDS(on) IO = 20 mA 9.9 15.5 Ω
Q4 N-Channel switch rDS(on) 1.1 1.8
Q5 P-Channel switch rDS(on) 4.6 8.5
Q6 N-Channel switch rDS(on) 1.2 2.2
Vd D1 – D4 Shottky diode forward voltage I(D1-D4) = 40 mA 610 720 mV
IOM Maximum output current 20 mA
ΔVO(ΔVI) Line regulation 10 V VO1 15 V, IO = 10 mA, VO3 = 27 V 0.56 %/V
ΔVO(ΔIO) Load regulation 1 mA I 20 mA, VO3 = 27 V 0.05 %/mA
LINEAR REGULATOR CONTROLLER VO4
VO4 Output voltage range (FB4) 4.5 V VI ≤ 5.5 V, 10 mA IO ≤ 500 mA 3.2 3.3 3.4 V
I(BASE) Maximum base drive current VI – VO4 – VBE ≥ 0.5 V (1) 13.5 19 mA
VI – VO4 – VBE ≥ 0.75 V (1) 20 27
ΔVO(ΔVI) Line regulation 4.75 V VI ≤ 5.5 V, IO = 500 mA 0.186 %/V
ΔVO(ΔIO) Load regulation 1 mA IO  ≤ 500 mA, VI = 5 V 0.064 %/A
Start-up current VO4 0.8 V 11 20 25 mA
VCOM BUFFER
Vcm Common mode input range 2.25 VO1-2 V
VIo Input offset voltage (IN) IO = 0 mA –25 25 mV
ΔVO(ΔIO) DC Load regulation IO = ±25 mA –30 37 mV
IO = ±50 mA –45 55
IO = ±100 mA –72 85
IO = ±150 mA –97 110
IIB Input bias current (IN) –300 –30 300 nA
IOM Peak output current VO1 = 15 V 1.2 A
VO1 = 10 V 0.65 A
VO1 = 5 V 0.15 A
FAULT PROTECTION THRESHOLDS
V(th, VO1) Shutdown threshold VO1 Rising –12% VO1 –8.75% VO1 –6 VO1 V
V(th, VO2) VO2 Rising –13 VO2 –9% VO2 –5 VO2 V
V(th, VO3) VO3 Rising –11 VO3 –8% VO3 –5 VO3 V
(1) With VI = supply voltage of the TPS6510x, VO4 = output voltage of the regulator, VBE = basis emitter voltage of external transistor

7.6 Dissipation Ratings

PACKAGE JA TA ≤ 25°C
POWER RATING
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
24-Pin TSSOP 30.13 C°/W (PWP soldered) 3.3 W 1.83 W 1.32 W
24-Pin VQFN 30 C°/W 3.3 W 1.8 W 1.3 W

7.7 Typical Characteristics

TPS65100 TPS65101 TPS65105 swf_v_ta_lvs496.gif
Figure 1. Switching Frequency vs Free-Air Temperature
TPS65100 TPS65101 TPS65105 eff_v_lc_lvs496.gif
Figure 3. Efficiency vs Load Current
TPS65100 TPS65101 TPS65105 eff_v_vi_lvs496.gif
Figure 5. Efficiency vs Input Voltage
TPS65100 TPS65101 TPS65105 pwm_dscon_mo_lvs496.gif
Figure 7. PWM Operation at Light Load
TPS65100 TPS65101 TPS65105 ld2_trn_res_lvs496.gif
Figure 9. Load Transient Response
TPS65100 TPS65101 TPS65105 sfst_vo1_lvs496.gif
Figure 11. Soft Start VO1
TPS65100 TPS65101 TPS65105 vo3_max_ld_lvs496.gif
Figure 13. VO3 Maximum Load Current
TPS65100 TPS65101 TPS65105 rdson_v_ta_lvs496.gif
Figure 2. rDS(on) N-Channel Main Switch vs Free-Air Temperature
TPS65100 TPS65101 TPS65105 eff2_v_lc_lvs496.gif
Figure 4. Efficiency vs Load Current
TPS65100 TPS65101 TPS65105 pwm_con_mo_lvs496.gif
Figure 6. PWM Operation Continuous Mode
TPS65100 TPS65101 TPS65105 ld_trn_res_lvs496.gif
Figure 8. Load Transient Response
TPS65100 TPS65101 TPS65105 pwr_up_lvs496.gif
Figure 10. Power-Up Sequencing
TPS65100 TPS65101 TPS65105 vo2_max_ld_lvs49.gif
Figure 12. VO2 Maximum Load Current
TPS65100 TPS65101 TPS65105 vo3-2_max_ld_lvs496.gif
Figure 14. VO3 Maximum Load Current