SLVSCP6H July   2014  – June  2020

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Application Schematic
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Regulators
        1. 8.3.1.1 Step-Down Regulator
        2. 8.3.1.2 3.3-V and 1.8-V LDO
      2. 8.3.2 Protection Circuits
        1. 8.3.2.1 Thermal Shutdown
        2. 8.3.2.2 Undervoltage Lockout (UVLO)
        3. 8.3.2.3 Overcurrent Protection (OCP)
        4. 8.3.2.4 Lock
      3. 8.3.3 Motor Speed Control
      4. 8.3.4 Sleep or Standby Condition
      5. 8.3.5 Non-Volatile Memory
    4. 8.4 Device Functional Modes
      1. 8.4.1  Motor Parameters
        1. 8.4.1.1 Motor Phase Resistance
        2. 8.4.1.2 BEMF Constant
      2. 8.4.2  Starting the Motor Under Different Initial Conditions
        1. 8.4.2.1 Case 1 – Motor Is Stationary
        2. 8.4.2.2 Case 2 – Motor Is Spinning in the Forward Direction
        3. 8.4.2.3 Case 3 – Motor Is Spinning in the Reverse Direction
      3. 8.4.3  Motor Start Sequence
        1. 8.4.3.1 ISD
        2. 8.4.3.2 Motor Resynchronization
        3. 8.4.3.3 Reverse Drive
        4. 8.4.3.4 Motor Brake
        5. 8.4.3.5 Motor Initialization
          1. 8.4.3.5.1 Align
          2. 8.4.3.5.2 Initial Position Detect (IPD)
            1. 8.4.3.5.2.1 IPD Operation
            2. 8.4.3.5.2.2 IPD Release Mode
            3. 8.4.3.5.2.3 IPD Advance Angle
          3. 8.4.3.5.3 Motor Start
        6. 8.4.3.6 Start-Up Timing
      4. 8.4.4  Start-Up Current Setting
        1. 8.4.4.1 Start-Up Current Ramp-Up
      5. 8.4.5  Closed Loop
        1. 8.4.5.1 Half Cycle Control and Full Cycle Control
        2. 8.4.5.2 Analog Mode Speed Control
        3. 8.4.5.3 Digital PWM Input Mode Speed Control
        4. 8.4.5.4 I2C Mode Speed Control
        5. 8.4.5.5 Closed Loop Accelerate
        6. 8.4.5.6 Control Coefficient
        7. 8.4.5.7 Commutation Control Advance Angle
      6. 8.4.6  Current Limit
        1. 8.4.6.1 Acceleration Current Limit
      7. 8.4.7  Lock Detect and Fault Handling
        1. 8.4.7.1 Lock0: Lock Detection Current Limit Triggered
        2. 8.4.7.2 Lock1: Abnormal Speed
        3. 8.4.7.3 Lock2: Abnormal Kt
        4. 8.4.7.4 Lock3 (Fault3): No Motor Fault
        5. 8.4.7.5 Lock4: Open Loop Motor Stuck Lock
        6. 8.4.7.6 Lock5: Closed Loop Motor Stuck Lock
      8. 8.4.8  AVS Function
        1. 8.4.8.1 Mechanical AVS Function
      9. 8.4.9  PWM Output
      10. 8.4.10 FG Customized Configuration
        1. 8.4.10.1 FG Output Frequency
        2. 8.4.10.2 FG Open-Loop and Lock Behavior
      11. 8.4.11 Diagnostics and Visibility
        1. 8.4.11.1 Motor Status Readback
        2. 8.4.11.2 Motor Speed Readback
          1. 8.4.11.2.1 Two-Byte Register Readback
        3. 8.4.11.3 Motor Electrical Period Readback
        4. 8.4.11.4 BEMF Constant Readback
        5. 8.4.11.5 Motor Estimated Position by IPD
        6. 8.4.11.6 Supply Voltage Readback
        7. 8.4.11.7 Speed Command Readback
        8. 8.4.11.8 Speed Command Buffer Readback
        9. 8.4.11.9 Fault Diagnostics
    5. 8.5 Register Maps
      1. 8.5.1 I2C Serial Interface
      2. 8.5.2 Register Map
      3. 8.5.3 Register Definition
        1. Table 9. Register Description
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Receiving Notification of Documentation Updates
    6. 12.6 Community Resources
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Commutation Control Advance Angle

To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the phase current of the motor is aligned with the BEMF voltage of the motor.

To align the phase current of the motor with the BEMF voltage of the motor, consider the inductive effect of the motor. The voltage applied to the motor should be applied in advance of the BEMF voltage of the motor (see Figure 27). The DRV10983 provides configuration bits for controlling the time (tadv) between the driving voltage and BEMF.

For motors with salient pole structures, aligning the motor BEMF voltage with the motor current may not achieve the best efficiency. In these applications, the timing advance should be adjusted accordingly. Accomplish this by operating the system at constant speed and load conditions and by adjusting the tadv until the minimum current is achieved.

DRV10983 DRV10983Z t_adv_def_LVSCP2.gifFigure 27. Advance Time (tadv) Definition

The DRV10983 has two options for adjusting the motor commutate advance time. When CtrlAdvMd = 0, mode 0 is selected. When CtrlAdvMd = 1, mode 1 is selected.

Mode 0: tadv is maintained to be a fixed time relative to the estimated BEMF zero cross as determined by Equation 4.

Equation 4. tadv = tSETTING

Mode 1: tadv is maintained to be a variable time relative to the estimated BEMF zero cross as determined by Equation 5.

Equation 5. tadv = tSETTING × (U-BEMF)/U.

where

  • U is the phase voltage amplitude
  • BEMF is phase BEMF amplitude

tSETTING (in µs) is determined by the configuration of the TCtrlAdv [6:4] and TCtrlAdv [3:0] bits as defined in Equation 6. For convenience, the available tSETTING values are provided in Table 5.

Equation 6. tSETTING = 2.5 µs × [TCtrlAdv[3:0]] << TCtrlAdv[6:4]

Table 5. Configuring Commutation Advance Timing by Adjusting tSETTING

tSETTING (µs) TCtrlAdv [6:0] HEX tSETTING (µs) TCtrlAdv [6:0] HEX tSETTING (µs) TCtrlAdv [6:0] HEX
0 000 0000 00 80 010 1000 28 640 101 1000 58
2.5 000 0001 01 90 010 1001 29 720 101 1001 59
5 000 0010 02 100 010 1010 2A 800 101 1010 5A
7.5 000 0011 03 110 010 1011 2B 880 101 1011 5B
10 000 0100 04 120 010 1100 2C 960 101 1100 5C
12.5 000 0101 05 130 010 1101 2D 1040 101 1101 5D
15 000 0110 06 140 010 1110 2E 1120 101 1110 5E
17.5 000 0111 07 150 010 1111 2F 1200 101 1111 5F
20 000 1000 08 160 011 1000 38 1280 110 1000 68
22.5 000 1001 09 180 011 1001 39 1440 110 1001 69
25 000 1010 0A 200 011 1010 3A 1600 110 1010 6A
27.5 000 1011 0B 220 011 1011 3B 1760 110 1011 6B
30 000 1100 0C 240 011 1100 3C 1920 110 1100 6C
32.5 000 1101 0D 260 011 1101 3D 2080 110 1101 6D
35 000 1110 0E 280 011 1110 3E 2240 110 1110 6E
37.5 000 1111 0F 300 011 1111 3F 2400 110 1111 6F
40 001 1000 18 320 100 1000 48 2560 111 1000 78
45 001 1001 19 360 100 1001 49 2880 111 1001 79
50 001 1010 1A 400 100 1010 4A 3200 111 1010 7A
55 001 1011 1B 440 100 1011 4B 3520 111 1011 7B
60 001 1100 1C 480 100 1100 4C 3840 111 1100 7C
65 001 1101 1D 520 100 1101 4D 4160 111 1101 7D
70 001 1110 1E 560 100 1110 4E 4480 111 1110 7E
75 001 1111 1F 600 100 1111 4F 4800 111 1111 7F