SLVSDZ4D February   2018  – February 2020 TPS2HB35-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
    2. 6.1 Recommended Connections for Unused Pins
  7. Specifications
    1. Table 3. Absolute Maximum Ratings
    2. Table 4. ESD Ratings
    3. Table 5. Recommended Operating Conditions
    4. Table 6. Thermal Information
    5. Table 7. Electrical Characteristics
    6. Table 8. SNS Timing Characteristics
    7. Table 9. Switching Characteristics
    8. 7.1      Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Protection Mechanisms
        1. 9.3.1.1 Thermal Shutdown
        2. 9.3.1.2 Current Limit
          1. 9.3.1.2.1 Current Limit Foldback
          2. 9.3.1.2.2 Programmable Current Limit
          3. 9.3.1.2.3 Undervoltage Lockout (UVLO)
          4. 9.3.1.2.4 VBB During Short-to-Ground
        3. 9.3.1.3 Voltage Transients
          1. 9.3.1.3.1 Load Dump
        4. 9.3.1.4 Driving Inductive Loads
        5. 9.3.1.5 Reverse Battery
        6. 9.3.1.6 Fault Event – Timing Diagrams (Version A/B/C)
      2. 9.3.2 Diagnostic Mechanisms
        1. 9.3.2.1 VOUTx Short-to-Battery and Open-Load
          1. 9.3.2.1.1 Detection With Switch Enabled
          2. 9.3.2.1.2 Detection With Switch Disabled
        2. 9.3.2.2 SNS Output
          1. 9.3.2.2.1 RSNS Value
            1. 9.3.2.2.1.1 High Accuracy Load Current Sense
            2. 9.3.2.2.1.2 SNS Output Filter
        3. 9.3.2.3 Fault Indication and SNS Mux
        4. 9.3.2.4 Resistor Sharing
        5. 9.3.2.5 High-Frequency, Low Duty-Cycle Current Sensing
    4. 9.4 Device Functional Modes
      1. 9.4.1 Off
      2. 9.4.2 Standby
      3. 9.4.3 Diagnostic
      4. 9.4.4 Standby Delay
      5. 9.4.5 Active
      6. 9.4.6 Fault
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Ground Protection Network
      2. 10.1.2 Interface With Microcontroller
      3. 10.1.3 I/O Protection
      4. 10.1.4 Inverse Current
      5. 10.1.5 Loss of GND
      6. 10.1.6 Automotive Standards
        1. 10.1.6.1 ISO7637-2
        2. 10.1.6.2 AEC – Q100-012 Short Circuit Reliability
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Thermal Considerations
        2. 10.2.2.2 RILIM Calculation
        3. 10.2.2.3 Diagnostics
          1. 10.2.2.3.1 Selecting the RSNS Value
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Typical Characteristics

TPS2HB35-Q1 RJA_vs_time.gif
Figure 3. Transient Thermal Impedance 1 Channel Enabled
TPS2HB35-Q1 CUarea_vs_rja.gif
Figure 5. RθJA vs Copper Area
TPS2HB35-Q1 IOUTSB_vs_temp.gif
VOUTX = 0 V VENX = 0 V VDIAG_EN = 0 V
Both Channels
Figure 7. Output Leakage Current (IOUT(standby)) vs Temperature
TPS2HB35-Q1 RON_vs_temp.gif
IOUTX = 200 mA VENX = 5 V VDIAG_EN = 0 V
RSNS = 1 kΩ
Figure 9. On Resistance (RON) vs Temperature
TPS2HB35-Q1 tDR_vs_temp.gif
ROUTX = 2.6 Ω VENX = 0 V to 5 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 11. Turn-on Delay Time (tDR) vs Temperature
TPS2HB35-Q1 SRR_vs_temp.gif
ROUTX = 2.6 Ω VENX = 0 V to 5 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 13. VOUT Slew Rate Rising (SRR) vs Temperature
TPS2HB35-Q1 TON_vs_temp.gif
ROUTX = 2.6 Ω VENX = 0 V to 5 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 15. Turn-on Time (tON) vs Temperature
TPS2HB35-Q1 ISNS_vs_IOUT_temp.gif
VSEL1 = VSEL2 = 0 V VENX = 5 V VDIAG_EN = 5 V
RSNS = 1 kΩ VBB = 13.5 V
Figure 17. Current Sense Output Current (ISNSI ) vs Load Current (IOUT) Across Temperature
TPS2HB35-Q1 ISNST_vs_temp.gif
VSEL1 = 5 V VSEL2 = 0 V VDIAG_EN = 5 V
RSNS = 1 kΩ VENX = 0 V
Figure 19. Temperature Sense Output Current (ISNST) vs Temperature
TPS2HB35-Q1 VIL_vs_temp.gif
VENX = 3.3 V to 0 V VOUTX = 0 V VDIAG_EN = 0 V
ROUTX = 1 kΩ
Figure 21. VIL vs Temperature
TPS2HB35-Q1 VIHYST_vs_temp.gif
VENX = 0 V to 3.3 V and 3.3 V to 0 V VOUTX = 0 V VDIAG_EN = 0 V
ROUTX = 1 kΩ
Figure 23. VIHYS vs Temperature
TPS2HB35-Q1 IIH_vs_temp.gif
VENX = 5 V VOUTX = 0 V VDIAG_EN = 0 V
ROUTX = 1 kΩ
Figure 25. IIH vs Temperature
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS02 - (GSMFGQ_1) - Turnoff Waveform_U09_CH1_8p25K_Lin_5uH_Lout_5uH_VBB_13p5V_5ohmsX2OUT.png
ROUT1 = 5 Ω RSNS = 1 kΩ VDIA_EN = 5 V
VSEL1 = VSEL2 = 0 V
Figure 27. Turn-off Time (tOFF)
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS03 - (GSFVWI_1) - SNS turnon with DIA_EN_U09_CH1_8p25K_Lin_5uH_Lout_5uH_VBB_13p5V_5ohmsX1OUT.png
VBB = 13.5 V TA = 25°C ROUT1 = 5 Ω
VEN = 0 V to 5 V
Figure 29. SNS Output Current Measurement Enable on DIAG_EN PWM
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS11 - (A1RGZ3_1) - STG - OTPB_U33_CH2_5K_Lin_5uH_Lout_5uH_VBB_13p5V.png
LOUT = 5 µH to GND RSNS = 1 kΩ VSEL1 = VSEL2 = 0 V
VEN = 0 V to 5 V VDIAG_EN = 5 V TA = 25°C
Figure 31. Device Version B Short Circuit Event
TPS2HB35-Q1 inductive_energy_turnoff.gif
VBB = 13.5 V TA = 25°C LOUT = 5 mH
Figure 33. 5 mH Inductive Load Demagnetization
TPS2HB35-Q1 RJA_vs_time_2ch.gif
Figure 4. Transient Thermal Impedance Both Channels Enabled
TPS2HB35-Q1 ISB_vs_temp.gif
VOUTX = 0 V VENX = 0 V VDIAG_EN = 0 V
Figure 6. Standby Current (ISB) vs Temperature
TPS2HB35-Q1 IQ_vs_temp.gif
IOUTX = 0 A VENX = 5 V VDIAG_EN = 5 V
RSNS = 1 kΩ VSEL1 = VSEL2 = 0 V
Figure 8. Quiescent Current (IQ) vs Temperature
TPS2HB35-Q1 RON_vs_VBB.gif
IOUTX = 200 mA VENX = 5 V VDIAG_EN = 0 V
RSNS = 1 kΩ
Figure 10. On Resistance (RON) vs VBB
TPS2HB35-Q1 tDF_vs_temp.gif
ROUTX = 2.6 Ω VENX = 5 V to 0 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 12. Turn-off Delay Time (tDF) vs Temperature
TPS2HB35-Q1 SRF_vs_temp.gif
ROUTX = 2.6 Ω VENX = 5 V to 0 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 14. VOUT Slew Rate Falling (SRF) vs Temperature
TPS2HB35-Q1 TOFF_vs_temp.gif
ROUTX = 2.6 Ω VENX = 5 V to 0 V VDIAG_EN = 0 V
RSNS = 1 kΩ VBB = 13.5 V Both Channels
Figure 16. Turn-off Time (tOFF) vs Temperature
TPS2HB35-Q1 ISNS_vs_IOUT_vbb.gif
VSEL1 = VSEL2 = 0 V VENX = 5 V VDIAG_EN = 5 V
RSNS = 1 kΩ TA = 25°C
Figure 18. Current Sense Output Current (ISNSI) vs Load Current (IOUT) Across VBB
TPS2HB35-Q1 ISNSFH_vs_temp.gif
VSEL1 = VSEL2 = 0 V VENX = 0 V VDIAG_EN = 5 V
RSNS = 500 Ω VOUTX Floating Both Channels
Figure 20. Fault High Output Current (ISNSFH) vs Temperature
TPS2HB35-Q1 VIH_vs_temp.gif
VENX = 0 V to 3.3 V VOUTX = 0 V VDIAG_EN = 0 V
ROUTX = 1 kΩ
Figure 22. VIH vs Temperature
TPS2HB35-Q1 IIL_vs_temp.gif
VENX = 0.8 V VOUTX = 0 V VDIAG_EN = 0 V
ROUTX = 1 kΩ
Figure 24. IIL vs Temperature
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS01 - (GSEFP9_1) - Turnon Waveform_U09_CH1_8p25K_Lin_5uH_Lout_5uH_VBB_13p5V_5ohmsX2OUT.png
ROUT1 = 5 Ω RSNS = 1 kΩ VDIA_EN = 5 V
VSEL1 = VSEL2 = 0 V
Figure 26. Turn-on Time (tON)
TPS2HB35-Q1 Load Step Settling.png
ROUT1 = 2.6 Ω RSNS = 1 kΩ VSEL1 = VSEL2 = 0 V
IOUT1 = 1 A to 5 A VBB = 13.5 V
Figure 28. ISNS Settling time (tSNSION1) on Load Step
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS10 - (GSEYER_1) - STG - OTPA_U21_CH2_5K_Lin_5uH_Lout_5uH_VBB_13p5V.png
LOUT = 5 µH to GND RSNS = 1 kΩ VSEL1 = VSEL2 = 0 V
VEN = 0 V to 5 V VDIAG_EN = 5 V TA = 25°C
Figure 30. Device Version A Short Circuit Event
TPS2HB35-Q1 M_TPS2HBxx_TPS2HB35_C0_Validation_SS12 - (GSBAUQ_1) - STG - OTPC_U09_CH2_8p25K_Lin_5uH_Lout_5uH_VBB_13p5V.png
LOUT = 5 µH to GND RSNS = 1 kΩ VSEL1 = VSEL2 = 0 V
VEN = 0 V to 5 V VDIAG_EN = 5 V TA = 25°C
Figure 32. Device Version C Short Circuit Event
TPS2HB35-Q1 TPS2HC35C_U13__VBB=13p5__TEMP=25.png
VBB = 13.5 V TA = 25°C COUT = 270 µF
ROUT = 6 Ω
Figure 34. TPS2HB35C-Q1 Charging a 270uF Capacitor