SLVSEN9D April   2019  – July 2022

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Device Comparison
      2. 7.3.2  Analog Inputs
        1. 7.3.2.1 Analog Input Protection
        2. 7.3.2.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.2.3 Analog Input Offset Adjust
      3. 7.3.3  ADC Core
        1. 7.3.3.1 ADC Theory of Operation
        2. 7.3.3.2 ADC Core Calibration
        3. 7.3.3.3 Analog Reference Voltage
        4. 7.3.3.4 ADC Overrange Detection
        5. 7.3.3.5 Code Error Rate (CER)
      4. 7.3.4  Temperature Monitoring Diode
      5. 7.3.5  Timestamp
      6. 7.3.6  Clocking
        1. 7.3.6.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.6.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.6.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.6.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.6.3.2 Automatic SYSREF Calibration
      7. 7.3.7  Programmable FIR Filter (PFIR)
        1. 7.3.7.1 Dual Channel Equalization
        2. 7.3.7.2 Single Channel Equalization
        3. 7.3.7.3 Time Varying Filter
      8. 7.3.8  Digital Down Converters (DDC)
        1. 7.3.8.1 Rounding and Saturation
        2. 7.3.8.2 Numerically-Controlled Oscillator and Complex Mixer
          1. 7.3.8.2.1 NCO Fast Frequency Hopping (FFH)
          2. 7.3.8.2.2 NCO Selection
          3. 7.3.8.2.3 Basic NCO Frequency Setting Mode
          4. 7.3.8.2.4 Rational NCO Frequency Setting Mode
          5. 7.3.8.2.5 NCO Phase Offset Setting
          6. 7.3.8.2.6 NCO Phase Synchronization
        3. 7.3.8.3 Decimation Filters
        4. 7.3.8.4 Output Data Format
        5. 7.3.8.5 Decimation Settings
          1. 7.3.8.5.1 Decimation Factor
          2. 7.3.8.5.2 DDC Gain Boost
      9. 7.3.9  JESD204C Interface
        1. 7.3.9.1 Transport Layer
        2. 7.3.9.2 Scrambler
        3. 7.3.9.3 Link Layer
        4. 7.3.9.4 8B/10B Link Layer
          1. 7.3.9.4.1 Data Encoding (8B/10B)
          2. 7.3.9.4.2 Multiframes and the Local Multiframe Clock (LMFC)
          3. 7.3.9.4.3 Code Group Synchronization (CGS)
          4. 7.3.9.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 7.3.9.4.5 Frame and Multiframe Monitoring
        5. 7.3.9.5 64B/66B Link Layer
          1. 7.3.9.5.1 64B/66B Encoding
          2. 7.3.9.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
          3. 7.3.9.5.3 Block, Multiblock and Extended Multiblock Alignment using Sync Header
            1. 7.3.9.5.3.1 Cyclic Redundancy Check (CRC) Mode
            2. 7.3.9.5.3.2 Forward Error Correction (FEC) Mode
          4. 7.3.9.5.4 Initial Lane Alignment
          5. 7.3.9.5.5 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 7.3.9.6 Physical Layer
          1. 7.3.9.6.1 SerDes Pre-Emphasis
        7. 7.3.9.7 JESD204C Enable
        8. 7.3.9.8 Multi-Device Synchronization and Deterministic Latency
        9. 7.3.9.9 Operation in Subclass 0 Systems
      10. 7.3.10 Alarm Monitoring
        1. 7.3.10.1 Clock Upset Detection
        2. 7.3.10.2 FIFO Upset Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode
      2. 7.4.2 Single-Channel Mode (DES Mode)
      3. 7.4.3 Dual-Input Single-Channel Mode (DUAL DES Mode)
      4. 7.4.4 JESD204C Modes
        1. 7.4.4.1 JESD204C Operating Modes Table
        2. 7.4.4.2 JESD204C Modes continued
        3. 7.4.4.3 JESD204C Transport Layer Data Formats
        4. 7.4.4.4 64B/66B Sync Header Stream Configuration
      5. 7.4.5 Power-Down Modes
      6. 7.4.6 Test Modes
        1. 7.4.6.1 Serializer Test-Mode Details
        2. 7.4.6.2 PRBS Test Modes
        3. 7.4.6.3 Clock Pattern Mode
        4. 7.4.6.4 Ramp Test Mode
        5. 7.4.6.5 Short and Long Transport Test Mode
          1. 7.4.6.5.1 Short Transport Test Pattern
        6. 7.4.6.6 D21.5 Test Mode
        7. 7.4.6.7 K28.5 Test Mode
        8. 7.4.6.8 Repeated ILA Test Mode
        9. 7.4.6.9 Modified RPAT Test Mode
      7. 7.4.7 Calibration Modes and Trimming
        1. 7.4.7.1 Foreground Calibration Mode
        2. 7.4.7.2 Background Calibration Mode
        3. 7.4.7.3 Low-Power Background Calibration (LPBG) Mode
      8. 7.4.8 Offset Calibration
      9. 7.4.9 Trimming
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Streaming Mode
    6. 7.6 SPI Register Map
  8. Application Information Disclaimer
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Wideband RF Sampling Receiver
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Input Signal Path
          2. 8.2.1.1.2 Clocking
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Calculating Values of AC-Coupling Capacitors
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Reconfigurable Dual-Channel 5-GSPS or Single-Channel 10-Gsps Oscilloscope
        1. 8.2.2.1 Design Requirements
          1. 8.2.2.1.1 Input Signal Path
          2. 8.2.2.1.2 Clocking
          3. 8.2.2.1.3 ADC12DJ5200RF
        2. 8.2.2.2 Application Curves
    3. 8.3 Initialization Set Up
  9. Power Supply Recommendations
    1. 9.1 Power Sequencing
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 145
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Trimming

Table 7-35 lists the parameters that can be trimmed and the associated registers. User trimming is limited to foreground (FG) calibration mode only.

Table 7-35 Trim Register Descriptions
TRIM PARAMETERTRIM REGISTERNOTES
Band-gap referenceBG_TRIMMeasurement on BG output pin.
Input termination resistanceRTRIM_x,
where x = A for INA± or B for INB±)
The device must be powered on with a clock applied.
Input offset voltageOADJ_A_FG0_VINx, OADJ_A_FG90_VINx and OADJ_B_FG0_VINx,
where OADJ_A applies to ADC core A and OADJ_B applies to ADC core B, FG0 applies to dual channel mode for ADC cores A and B and single channel mode for ADC core B, FG90 applies to ADC core A in single channel mode and x = A for INA± or B for INB±)
Input offset adjustment in dual channel mode consists of changing OADJ_A_FG0_VINA for channel A and OADJ_B_FG0_VINB for channel B. In single channel mode, OADJ_A_FG90_VINx and OADJ_B_FG0_VINx must be adjusted together to trim the input offset or adjusted separate to compensate the fS/2 offset spur.
INA± and INB± gainGAIN_xy_FGDUAL or GAIN_xy_FGDES,
where x = ADC channel (A or B) and y = bank number (0 or 1)
Set FS_RANGE_A and FS_RANGE_B to default values before trimming the input. Use FS_RANGE_A and FS_RANGE_B to adjust the full-scale input voltage. The GAIN_xy_FGDUAL registers apply to Dual Channel Mode and the GAIN_xy_FGDES registers apply to the Single Channel Mode. To trim the gain of ADC core A or B, change GAIN_x0_FGDUAL and GAIN_x1_FGDUAL (or GAIN_x0_FGDES and GAIN_x1_FGDES) together in the same direction. To trim the gain of the two banks within ADC A or B, change GAIN_x0_FGDUAL and GAIN_x1_FGDUAL (or GAIN_x0_FGDES and GAIN_x1_FGDES) in opposite directions.
INA± and INB± full-scale input voltageFS_RANGE_x,
where x = A for INA± or B for INB±)
Full-scale input voltage adjustment for each input. The default value is effected by GAIN_Bx (x = 0, 1, 4 or 5). Trim GAIN_Bx with FS_RANGE_x set to the default value. FS_RANGE_x can then be used to trim the full-scale input voltage.
Intra-ADC core timing (bank timing)Bx_TIME_y,
where x = bank number (0, 1, 4 or 5)
and y = 0° (0) or –90° (90) clock phase
Trims the timing between the two banks of an ADC core (ADC A or B). The 0° clock phase is used for dual channel mode and for ADC B in single channel mode. The –90° clock phase is used only for ADC A in single-channel mode. A mismatch in the timing between the two banks of an ADC core can result in an fS/2-fIN spur in dual channel mode or fS/4±fIN spurs in single channel mode.
Inter-ADC core timing (dual-channel mode)TADJ_A, TADJ_BThe suffix letter (A or B) indicates the ADC core that is being trimmed. Changing either TADJ_A or TADJ_B adjusts the sampling instance of ADC A relative to ADC B in dual channel mode.
Inter-ADC core timing (single-channel mode)TADJ_A_FG90_VINx, TADJ_B_FG0_VINx,
where x = analog input (INA± or INB±)
These trim registers are used to adjust the timing of ADC core A relative to ADC core B in single channel mode. A mismatch in the timing will result in an fS/2-fIN spur that is signal dependent. Changing either TADJ_A_FG90_VINx or TADJ_B_FG0_VINx changes the relative timing of ADC core A relative to ADC core B in single channel mode.