• Menu
  • Product
  • Email
  • PDF
  • Order now
  • DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization

    • SNLS430C October   2012  – August 2014 DS125BR111

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Simplified Schematic
  5. 5 Revision History
  6. 6 Pin Configuration and Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Electrical Characteristics — Serial Management Bus Interface
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 Functional Datapath Blocks
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Pin Control Mode
      2. 8.4.2 SMBus Mode
      3. 8.4.3 Signal Conditioning Settings
    5. 8.5 Programming
    6. 8.6 Register Maps
      1. 8.6.1 Transfer Of Data Via The SMBus
      2. 8.6.2 SMBus Transactions
      3. 8.6.3 Writing a Register
      4. 8.6.4 Reading a Register
      5. 8.6.5 SMBus Register Information
  9. 9 Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Signal Integrity
      2. 9.1.2 RX-Detect in SAS/SATA Applications
      3. 9.1.3 PCIe Applications
        1. 9.1.3.1 RXDET When Using SMBus Modes
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
  14. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization

1 Features

  • Low 65 mW/Channel (typ) Power Consumption
  • Supports Link Training
  • Supports Out-of-Band (OOB) Signaling
  • Advanced Signal Conditioning I/O
    • Receive CTLE up to 10 dB at 6 GHz
    • Linear Output Driver
    • Output Voltage Range over 1200 mV
  • Programmable via Pin Selection, EEPROM, or SMBus Interface
  • Single Supply Voltage: 2.5 V or 3.3 V
  • −40°C to 85°C Operating Temperature Range
  • Flow-thru Pinout in 4 mm × 4 mm 24-pin Leadless WQFN Package

2 Applications

  • SAS-1/2/3 and SATA-1/2/3
  • PCI Express 1/2/3
  • Other Proprietary Interfaces up to 12.5 Gbps

3 Description

The DS125BR111 is an extremely low power high performance repeater/redriver designed to support 1-lane carrying high speed interface up to 12.5 Gbps. The receiver's continuous time linear equalizer (CTLE) provides a boost of 3-10 dB at 6 GHz in each channel. When operating in SAS-3 or PCIe Gen-3 applications, the DS125BR111 preserves transmit signal characteristics allowing the host controller and the end point to negotiate transmit equalizer coefficients. Transparency to the link training protocol maximizes the flexibility of the physical placement of the device within the interconnect and improves overall channel performance.

The programmable settings can be applied easily via pins, software (SMBus or I2C), or loaded via an external EEPROM. In EEPROM mode, the configuration information is automatically loaded on power up, which eliminates the need for an external microprocessor or software driver.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
DS125BR111 WQFN (24) 4.00mm x 4.00mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

111sch_r2.gif

5 Revision History

Changes from B Revision (July 2014) to C Revision

  • Changed data sheet flow and layout to conform with new TI standards. Added the following sections: Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information Go

Changes from A Revision (January 2014) to B Revision

  • Changed Features Go

Changes from * Revision (April 2013) to A Revision

  • Changed layout of National Data Sheet to TI formatGo

6 Pin Configuration and Functions

24 Pin
Package RTW
Top View
111pinout.gif

The center DAP on the package bottom is the only device GND connection. This pad must be connected to GND through multiple (minimum of 4) vias to ensure optimal electrical and thermal performance.

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
DIFFERENTIAL HIGH SPEED I/O
INB+, INB- 11, 12 I Inverting and non-inverting CML differential inputs to the equalizer. On-chip 50 Ω termination resistor connects INB+ to VDD and INB- to VDD when enabled by RXDET control logic.
AC coupling required on high-speed I/O
OUTB+, OUTB- 20, 19 O Inverting and non-inverting 50 Ω driver outputs. Compatible with AC coupled CML inputs.
AC coupling required on high-speed I/O
INA+, INA- 24, 23 I Inverting and non-inverting CML differential inputs to the equalizer. On-chip 50 Ω termination resistor connects INA+ to VDD and INA- to VDD when enabled by RXDET control logic.
AC coupling required on high-speed I/O
OUTA+, OUTA- 7, 8 O Inverting and non-inverting 50 Ω driver outputs. Compatible with AC coupled CML inputs.
AC coupling required on high-speed I/O
CONTROL PINS — SHARED (LVCMOS)
ENSMB 3 I, 4-LEVEL,
LVCMOS
System Management Bus (SMBus) enable Pin
Tie 1 kΩ to VDD = Register Access SMBus Slave mode
FLOAT = Read External EEPROM (Master SMBus Mode)
Tie 1 kΩ to GND = Pin Mode
ENSMB = Float or 1 (SMBus MODEs)
SCL 5 I, LVCMOS,
O, OPEN Drain
ENSMB Master or Slave mode
SMBus clock input Pin is enabled (slave mode).
Clock output when loading EEPROM configuration (master mode).
SDA 4 I, LVCMOS,
O, OPEN Drain
ENSMB Master or Slave mode
The SMBus bidirectional SDA Pin is enabled. Data input or open drain output. External pull-up required as per SMBus protocol (typically in the 2 kΩ to 5 kΩ range). This pin is 3.3 V-tolerant.
AD0-AD3 10, 9, 2, 1 I, LVCMOS ENSMB Master or Slave mode
SMBus Slave Address Inputs. In SMBus mode, these Pins are the user set SMBus slave address inputs.
READEN 17 I, LVCMOS ENSMB = Float: When using an External EEPROM, a logic low on this pin starts the load from the external EEPROM
ENSMB = 1: When using SMBus Slave Mode the VOD_SEL/READEN pin must be tied Low for the AD[3:0] to be active. If this pin is tied High or Floated an address of 0xB0 will be used for the DS125BR111.
DONE 18 O, LVCMOS When using an External EEPROM (ENSMB = Float), Valid Register Load Status Output
HIGH = External EEPROM load failed or incomplete
LOW = External EEPROM load passed
ENSMB = 0 (PIN MODE)
EQA0
EQB0
10
1
I, 4-LEVEL,
LVCMOS
EQA0 and EQB0 control the level of equalization of the A/B directions. The Pins are defined as EQx0 only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide independent control of each channel. See Table 4.
EQA1
EQB1
9
2
I, 4-LEVEL,
LVCMOS
EQA1 and EQB1 are not used in the DS125BR111 design. These pins should always be tied to GND.
VODA_DB 4 I, 4-LEVEL,
LVCMOS
VODA_DB controls the CHA output amplitude dynamic range, for SAS and PCIe applications it should be held Low. The Pin is defined as VODA_DB only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide control of each channel, pin 4 is converted to SDA. See Table 5.
VODB_DB 5 I, 4-LEVEL,
LVCMOS
VODB_DB controls the CHB output amplitude dynamic range, for SAS and PCIe applications it should be held Low. The Pin is defined as VODB_DB only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide control of each channel, pin 5 is converted to SCL. See Table 5.
SD_TH 14 I, 4-LEVEL,
LVCMOS
Controls the internal Signal Detect Threshold. This detection threshold is for system debug only and does not control the high speed datapath.
See Table 3.
VOD_SEL 17 I, 4-LEVEL,
LVCMOS
VOD_SEL controls the low frequency ratio of input voltage to output voltage amplitude. See Table 5.
RXDET 18 I, 4-LEVEL,
LVCMOS
The RXDET Pin controls the receiver detect function. Depending on the input level, a 50 Ω or > 50 kΩ termination to the power rail is enabled. In a SAS/SATA system RXDET should be set to a Logic "1" state to keep the termination always enabled.
The RXDET pin only controls the RXDET function in PIN MODE. PCIe applications which require SMBus Mode functionality must utilize a specific register write sequence documented in PCIe Applications . If this sequence is not utilized, SMBus configuration modes will default the input terminations to active (50 Ω). See Table 2 .
CONTROL PINS — BOTH PIN AND SMBus MODES (LVCMOS)
RES 13 I, 4-LEVEL,
LVCMOS
Reserved:
This input must be left Floating.
VDD_SEL 16 I, FLOAT Controls the internal regulator
Float = 2.5 V mode
Tie GND = 3.3 V mode
PWDN 6 I, LVCMOS Tie High = Low power - power down
Tie GND = Normal Operation
See Table 2.
POWER (See Figure 11)
VIN 15 Power In 3.3 V mode, feed 3.3 V to VIN
In 2.5 V mode, leave floating.
VDD 21, 22 Power Power supply pins CML/analog
2.5 V mode, connect to 2.5 V
3.3 V mode, decouple each VDD pin with 0.22 µF cap to GND
GND DAP Power Ground pad (DAP - die attach pad).

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply Voltage (VDD - 2.5 V) -0.5 +2.75 V
Supply Voltage (VIN - 3.3 V) -0.5 +4.0 V
LVCMOS Input/Output Voltage -0.5 +4.0 V
CML Input Voltage -0.5 VDD + 0.5 V
CML Input Current -30 +30 mA
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range -40 125 °C
Tsolder Lead Temperature Range Soldering (4 sec.)(1) 260 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2) -5000 5000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(3) -1250 1250
(1) For soldering specifications: See application note SNOA549.
(2) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply Voltage (2.5 V mode) 2.375 2.5 2.625 V
Supply Voltage (3.3 V mode) 3.0 3.3 3.6 V
Ambient Temperature -40 25 +85 °C
SMBus (SDA, SCL) 3.6 V
Supply Noise up to 50 MHz(2) 100 mVp-p

7.4 Thermal Information

THERMAL METRIC(1) DS125BR111 UNIT
RTW
24 PINS
RθJA Junction-to-ambient thermal resistance 35.0 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 34.0
RθJB Junction-to-board thermal resistance 13.4
ψJT Junction-to-top characterization parameter 0.3
ψJB Junction-to-board characterization parameter 13.4
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.3
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER
IDD Current Consumption VODx_DB = 0, EQ = 0, VOD_SEL = 1,
RXDET = 1, PWDN = 0
VIN = 2.625 or 3.6 V
40 60 mA
Power Down Current Consumption PWDN = 1 7 13 mA
VDD Integrated LDO Regulator VIN = 3.0 - 3.6 V 2.375 2.5 2.625 V
LVCMOS / LVTTL DC SPECIFICATIONS
Vih25 High Level Input Voltage 2.5 V Supply Mode 1.7 VDD V
Vih33 High Level Input Voltage 3.3 V Supply Mode 1.7 VIN V
Vil Low Level Input Voltage 0 0.7 V
Voh High Level Output Voltage
(DONE pin)
Ioh = −4 mA 2.0 V
Vol Low Level Output Voltage
(DONE pin)
Iol = 4 mA 0.4 V
Iih Input High Current (PWDN pin) VIN = 3.6 V,
LVCMOS = 3.6 V
-15 +15 µA
Iil Input Low Current (PWDN pin) VIN = 3.6 V,
LVCMOS = 0 V
-15 +15 µA
4-LEVEL INPUT DC SPECIFICATIONS
Iih Input High Current with internal resistors
(4–level input pin)
VIN = 3.6 V,
LVCMOS = 3.6 V
+20 +80 µA
Iil Input Low Current with internal resistors
(4–level input pin)
VIN = 3.6 V,
LVCMOS = 0 V
-160 -40 µA
Vth Threshold 0 / R VDD = 2.5 V (2.5 V supply mode)
Internal LDO Disabled
See Table 1 for details
0.40 V
Threshold R / Float 1.25
Threshold Float / 1 2.1
Threshold 0 / R VIN = 3.3 V (3.3 V supply mode)
Internal LDO Enabled
See Table 1 for details.
0.55 V
Threshold R / Float 1.65
Threshold Float / 1 2.7
CML RECEIVER INPUTS (IN_n+, IN_n-)
RLRX-diff RX Differential return loss SDD11 10 MHz -19 dB
SDD11 2 GHz -14
SDD11 6-11.1 GHz -8
RLRX-cm RX Common mode return loss 0.05 - 5 GHz -10 dB
ZRX-dc RX DC common mode impedance Tested at VDD = 2.5 V 40 50 60 Ω
ZRX-diff-dc RX DC differential mode impedance Tested at VDD = 2.5 V 80 100 120 Ω
VRX-signal-det-diff-pp Signal detect assert level SD_TH = F (float),
0101 pattern at 12 Gbps
50 mVp-p
VRX-idle-det-diff-pp Signal detect de-assert level SD_TH = F (float),
0101 pattern at 12 Gbps
37 mVp-p
HIGH SPEED OUTPUTS
TTX-RISE-FALL Transmitter rise/fall time (3) 20% to 80% of differential output voltage 40 ps
TRF-MISMATCH Transmitter rise/fall mismatch (4) 20% to 80% of differential output voltage 0.01 UI
RLTX-DIFF TX Differential return loss SDD22 10 MHz - 2 GHz -15 dB
SDD22 5.5 GHz -12
SDD22 11.1 GHz -10 dB
RLTX-CM TX Common mode return loss 0.05 - 5 GHz -10 dB
ZTX-DIFF-DC DC differential TX impedance 100 Ω
ITX-SHORT Transmitter short circuit current limit Total current, output shorted to VDD or GND 20 mA
VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute delta of DC common mode voltage during L0 and electrical idle 100 mV
VTX-CM-DC-LINE-DELTA Absolute delta of DC common mode voltage between TX+ and TX- 25 mV
HIGH SPEED OUTPUTS
VTX-diff1-pp Output Voltage Differential Swing Differential measurement with OUTx+ and OUTx-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
VODx_DB = 0 dB,
VID = 600 mVp-p
VOD = 001'b (0.7*VID)
440 500 550 mVp-p
VTX-diff2-pp Output Voltage Differential Swing Differential measurement with OUTx+ and OUTx-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
VODx_DB = 0 dB,
VID = 1000 mVp-p
VOD = 001'b (0.7*VID) (5)
630 700 740 mVp-p
VTX-diff3-pp Output Voltage Differential Swing Differential measurement with OUTx+ and OUTx-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
VODx_DB = 0 dB,
VID = 600 mVp-p
VOD = 111'b (1.05*VID) (5)
570 650 740 mVp-p
VTX-diff4-pp Output Voltage Differential Swing Differential measurement with OUTx+ and OUTx-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
VODx_DB = 0 dB,
VID = 1000 mVp-p
VOD = 111'b (1.05*VID) (5)
800 1010 1215 mVp-p
TTX-IDLE-DATA Time to transition to valid differential signal after idle VID = 1.0 Vp-p, 3 Gbps 0.04 ns
TTX-DATA-IDLE Time to transition to idle after differential signal VID = 1.0 Vp-p, 3 Gbps 0.70 ns
TPD Differential Propagation Delay EQ = Level 1 to Level 4 70 ps
EQUALIZATION
DJE1 Residual Deterministic Jitter at 6 Gbps Input: 5” Differential Stripline,
5mil trace width, FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 0x01,
VOD = 111'b, VODx_DB = 0 dB
0.06 UI
DJE2 Residual Deterministic Jitter at 12 Gbps Input: 5” Differential Stripline,
5mil trace width, FR4,
VID = 0.8 Vp-p,
PRBS15, EQ = 0x01,
VOD = 111'b, VODx_DB = 0 dB
0.12 UI
RJADD1 Additive Random Jitter (1) Evaluation Module (EVM) only, FR4,
VID = 0.8 Vp-p,
PRBS7, EQ = 0x00,
VOD = 111'b, VODx_DB = 0 dB
< 300 fs RMS
RJADD2 Additive Random Jitter (1) Input: 10" Differential Stripline,
5 mil trace width, FR4,
VID = 0.8 Vp-p,
PRBS7, EQ = 0x03,
VOD = 111'b, VODx_DB = 0 dB
< 400 fs RMS
(1) Additive random jitter is given in RMS value by the following equation: RJADD = √[(Output Jitter)2 - (Input Jitter)2] . The typical source input jitter for these measurements is 150 fs RMS.
(2) Allowed supply noise (mVp-p sine wave) under typical conditions.
(3) Rise / Fall time measurements will vary based on EQ setting, Input Amplitude, and input edge rate.
(4) Mismatch between rise time and fall time for a given channel.
(5) The output VOD level is not fixed. It will be adjusted automatically based on the VID input amplitude level and the frequency content. The DS125BR111 repeater is designed to be transparent, so the TX-FIR (de-emphasis) is passed to the RX to support handshake negotiation link training.

7.6 Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE DC SPECIFICATIONS
VIL Data, Clock Input Low Voltage 0.8 V
VIH Data, Clock Input High Voltage 2.1 3.6 V
VOL Output Low Voltage SDA or SCL, IOL = 1.25 mA 0 0.36 V
VDD Nominal Bus Voltage 2.375 3.6 V
IIH-pin Input Leakage Per Device pin +20 +150 µA
IIL-pin Input Leakage Per Device pin -160 -40 µA
CI Capacitance for SDA and SCL See(1)(2) < 5 pF
RTERM External Termination Resistance pull to VDD = 2.5 V ± 5% OR 3.3 V ± 10% Pullup VDD = 3.3 V(1)(2)(3) 2000 Ω
Pullup VDD = 2.5 V(1)(2)(3) 1000 Ω
(1) Typical value.
(2) Recommended maximum capacitance load per bus segment is 400 pF.
(3) Maximum termination voltage should be identical to the device supply voltage.

7.7 Timing Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE TIMING SPECIFICATIONS
FSMB Bus Operating Frequency ENSMB = VDD (Slave Mode) 400 kHz
ENSMB = FLOAT (Master Mode) (1) 280 400 520 kHz
tFALL SCL or SDA Fall Time Read operation
RPU = 4.7 kΩ, Cb < 50 pF
60 ns
tRISE SCL or SDA Rise Time Read operation
RPU = 4.7 kΩ, Cb < 50 pF
140 ns
tF Clock/Data Fall Time See(2) 300 ns
tR Clock/Data Rise Time See(2) 1000 ns
(1) The external EEPROM device address byte must be 0xA0 and capable of 1 MHz operation at 2.5 V and 3.3 V.
(2) Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.
edge.gifFigure 1. Output Rise And Fall Transition Time
30198703.gifFigure 2. Propagation Delay Timing Diagram
30198704.gifFigure 3. Transmit Idle-Data and Data-Idle Response Time
30198794.gifFigure 4. SMBus Timing Parameters

7.8 Typical Characteristics

C001_SNLS491.png
Test Conditions
Data Rate/Test Pattern: 1.5625 Gbps /
101010 Repeating Pattern
VOD: Level 6
EQ: Level 1
VOD_DB: 000'b
VDD: 2.5 V
Figure 5. Typical VOD vs. VDD
C005_SNLS491.png
Test Conditions
Data Rate/Test Pattern: 1.5625 Gbps / 101010 Repeating Pattern
EQ: Minimum
VOD_DB: 000'b
Temperature: 25°C
VDD: 2.5 V
Figure 7. Typical VOD Level vs. VID
C003_SNLS491.png
Test Conditions
Data Rate/Test Pattern: 1.5625 Gbps /
101010 Repeating Pattern
VOD: Level 6
EQ: Level 1
VOD_DB: 000'b
Temperature: 25°C
Figure 6. Typical VOD vs. Temperature

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale