• Menu
  • Product
  • Email
  • PDF
  • Order now
  • DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization

    • SNLS430C October   2012  – August 2014 DS125BR111

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Simplified Schematic
  5. 5 Revision History
  6. 6 Pin Configuration and Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Electrical Characteristics — Serial Management Bus Interface
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 Functional Datapath Blocks
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Pin Control Mode
      2. 8.4.2 SMBus Mode
      3. 8.4.3 Signal Conditioning Settings
    5. 8.5 Programming
    6. 8.6 Register Maps
      1. 8.6.1 Transfer Of Data Via The SMBus
      2. 8.6.2 SMBus Transactions
      3. 8.6.3 Writing a Register
      4. 8.6.4 Reading a Register
      5. 8.6.5 SMBus Register Information
  9. 9 Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Signal Integrity
      2. 9.1.2 RX-Detect in SAS/SATA Applications
      3. 9.1.3 PCIe Applications
        1. 9.1.3.1 RXDET When Using SMBus Modes
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
  14. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

DS125BR111 Low Power 12.5 Gbps 1-Lane Linear Repeater with Equalization

1 Features

  • Low 65 mW/Channel (typ) Power Consumption
  • Supports Link Training
  • Supports Out-of-Band (OOB) Signaling
  • Advanced Signal Conditioning I/O
    • Receive CTLE up to 10 dB at 6 GHz
    • Linear Output Driver
    • Output Voltage Range over 1200 mV
  • Programmable via Pin Selection, EEPROM, or SMBus Interface
  • Single Supply Voltage: 2.5 V or 3.3 V
  • −40°C to 85°C Operating Temperature Range
  • Flow-thru Pinout in 4 mm × 4 mm 24-pin Leadless WQFN Package

2 Applications

  • SAS-1/2/3 and SATA-1/2/3
  • PCI Express 1/2/3
  • Other Proprietary Interfaces up to 12.5 Gbps

3 Description

The DS125BR111 is an extremely low power high performance repeater/redriver designed to support 1-lane carrying high speed interface up to 12.5 Gbps. The receiver's continuous time linear equalizer (CTLE) provides a boost of 3-10 dB at 6 GHz in each channel. When operating in SAS-3 or PCIe Gen-3 applications, the DS125BR111 preserves transmit signal characteristics allowing the host controller and the end point to negotiate transmit equalizer coefficients. Transparency to the link training protocol maximizes the flexibility of the physical placement of the device within the interconnect and improves overall channel performance.

The programmable settings can be applied easily via pins, software (SMBus or I2C), or loaded via an external EEPROM. In EEPROM mode, the configuration information is automatically loaded on power up, which eliminates the need for an external microprocessor or software driver.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
DS125BR111 WQFN (24) 4.00mm x 4.00mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

111sch_r2.gif

5 Revision History

Changes from B Revision (July 2014) to C Revision

  • Changed data sheet flow and layout to conform with new TI standards. Added the following sections: Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information Go

Changes from A Revision (January 2014) to B Revision

  • Changed Features Go

Changes from * Revision (April 2013) to A Revision

  • Changed layout of National Data Sheet to TI formatGo

6 Pin Configuration and Functions

24 Pin
Package RTW
Top View
111pinout.gif

The center DAP on the package bottom is the only device GND connection. This pad must be connected to GND through multiple (minimum of 4) vias to ensure optimal electrical and thermal performance.

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
DIFFERENTIAL HIGH SPEED I/O
INB+, INB- 11, 12 I Inverting and non-inverting CML differential inputs to the equalizer. On-chip 50 Ω termination resistor connects INB+ to VDD and INB- to VDD when enabled by RXDET control logic.
AC coupling required on high-speed I/O
OUTB+, OUTB- 20, 19 O Inverting and non-inverting 50 Ω driver outputs. Compatible with AC coupled CML inputs.
AC coupling required on high-speed I/O
INA+, INA- 24, 23 I Inverting and non-inverting CML differential inputs to the equalizer. On-chip 50 Ω termination resistor connects INA+ to VDD and INA- to VDD when enabled by RXDET control logic.
AC coupling required on high-speed I/O
OUTA+, OUTA- 7, 8 O Inverting and non-inverting 50 Ω driver outputs. Compatible with AC coupled CML inputs.
AC coupling required on high-speed I/O
CONTROL PINS — SHARED (LVCMOS)
ENSMB 3 I, 4-LEVEL,
LVCMOS
System Management Bus (SMBus) enable Pin
Tie 1 kΩ to VDD = Register Access SMBus Slave mode
FLOAT = Read External EEPROM (Master SMBus Mode)
Tie 1 kΩ to GND = Pin Mode
ENSMB = Float or 1 (SMBus MODEs)
SCL 5 I, LVCMOS,
O, OPEN Drain
ENSMB Master or Slave mode
SMBus clock input Pin is enabled (slave mode).
Clock output when loading EEPROM configuration (master mode).
SDA 4 I, LVCMOS,
O, OPEN Drain
ENSMB Master or Slave mode
The SMBus bidirectional SDA Pin is enabled. Data input or open drain output. External pull-up required as per SMBus protocol (typically in the 2 kΩ to 5 kΩ range). This pin is 3.3 V-tolerant.
AD0-AD3 10, 9, 2, 1 I, LVCMOS ENSMB Master or Slave mode
SMBus Slave Address Inputs. In SMBus mode, these Pins are the user set SMBus slave address inputs.
READEN 17 I, LVCMOS ENSMB = Float: When using an External EEPROM, a logic low on this pin starts the load from the external EEPROM
ENSMB = 1: When using SMBus Slave Mode the VOD_SEL/READEN pin must be tied Low for the AD[3:0] to be active. If this pin is tied High or Floated an address of 0xB0 will be used for the DS125BR111.
DONE 18 O, LVCMOS When using an External EEPROM (ENSMB = Float), Valid Register Load Status Output
HIGH = External EEPROM load failed or incomplete
LOW = External EEPROM load passed
ENSMB = 0 (PIN MODE)
EQA0
EQB0
10
1
I, 4-LEVEL,
LVCMOS
EQA0 and EQB0 control the level of equalization of the A/B directions. The Pins are defined as EQx0 only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide independent control of each channel. See Table 4.
EQA1
EQB1
9
2
I, 4-LEVEL,
LVCMOS
EQA1 and EQB1 are not used in the DS125BR111 design. These pins should always be tied to GND.
VODA_DB 4 I, 4-LEVEL,
LVCMOS
VODA_DB controls the CHA output amplitude dynamic range, for SAS and PCIe applications it should be held Low. The Pin is defined as VODA_DB only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide control of each channel, pin 4 is converted to SDA. See Table 5.
VODB_DB 5 I, 4-LEVEL,
LVCMOS
VODB_DB controls the CHB output amplitude dynamic range, for SAS and PCIe applications it should be held Low. The Pin is defined as VODB_DB only when ENSMB is de-asserted (low). When ENSMB goes high the SMBus registers provide control of each channel, pin 5 is converted to SCL. See Table 5.
SD_TH 14 I, 4-LEVEL,
LVCMOS
Controls the internal Signal Detect Threshold. This detection threshold is for system debug only and does not control the high speed datapath.
See Table 3.
VOD_SEL 17 I, 4-LEVEL,
LVCMOS
VOD_SEL controls the low frequency ratio of input voltage to output voltage amplitude. See Table 5.
RXDET 18 I, 4-LEVEL,
LVCMOS
The RXDET Pin controls the receiver detect function. Depending on the input level, a 50 Ω or > 50 kΩ termination to the power rail is enabled. In a SAS/SATA system RXDET should be set to a Logic "1" state to keep the termination always enabled.
The RXDET pin only controls the RXDET function in PIN MODE. PCIe applications which require SMBus Mode functionality must utilize a specific register write sequence documented in PCIe Applications . If this sequence is not utilized, SMBus configuration modes will default the input terminations to active (50 Ω). See Table 2 .
CONTROL PINS — BOTH PIN AND SMBus MODES (LVCMOS)
RES 13 I, 4-LEVEL,
LVCMOS
Reserved:
This input must be left Floating.
VDD_SEL 16 I, FLOAT Controls the internal regulator
Float = 2.5 V mode
Tie GND = 3.3 V mode
PWDN 6 I, LVCMOS Tie High = Low power - power down
Tie GND = Normal Operation
See Table 2.
POWER (See Figure 11)
VIN 15 Power In 3.3 V mode, feed 3.3 V to VIN
In 2.5 V mode, leave floating.
VDD 21, 22 Power Power supply pins CML/analog
2.5 V mode, connect to 2.5 V
3.3 V mode, decouple each VDD pin with 0.22 µF cap to GND
GND DAP Power Ground pad (DAP - die attach pad).

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale