SNOA961A February   2017  – February 2023 LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Inductive Touch System Design Guide for HMI Button Applications
  2. 1Mechanical Design
    1. 1.1 Theory of Operation
    2. 1.2 Button Construction
    3. 1.3 Mechanical Deflection
    4. 1.4 Mechanical Factors that Affect Sensitivity
      1. 1.4.1 Target Material Selection
        1. 1.4.1.1 Material Stiffness
        2. 1.4.1.2 Material Conductivity
      2. 1.4.2 Button Geometry
      3. 1.4.3 Spacing Between Target and Sensor
    5. 1.5 Layer Stacks of Touch Buttons
      1. 1.5.1 Conductive Surface
      2. 1.5.2 Non-Conductive Surface
    6. 1.6 Sensor Mounting Reference
    7. 1.7 Sensor Mounting Techniques
      1. 1.7.1 Adhesive-Based
      2. 1.7.2 Spring-Based
      3. 1.7.3 Slot-Based
    8. 1.8 Mechanical Isolation
  3. 2Sensor Design
    1. 2.1 Overview
      1. 2.1.1 Sensor Electrical Parameters
      2. 2.1.2 Sensor Frequency
      3. 2.1.3 Sensor RP and RS
      4. 2.1.4 Sensor Inductance
      5. 2.1.5 Sensor Capacitance
      6. 2.1.6 Sensor Quality Factor
    2. 2.2 Inductive Touch
    3. 2.3 LDC211x/LDC3114 Design Boundary Conditions
    4. 2.4 Sensor Physical Construction
      1. 2.4.1 Sensor Physical Size
      2. 2.4.2 Sensor Capacitor Position
      3. 2.4.3 Shielding INn traces
      4. 2.4.4 Shielding Capacitance
      5. 2.4.5 CCOM Sizing
      6. 2.4.6 Multi-Layer Design
        1. 2.4.6.1 Sensor Parasitic Capacitance
      7. 2.4.7 Sensor Spacers
      8. 2.4.8 Sensor Stiffener
      9. 2.4.9 Racetrack Inductor Shape
    5. 2.5 Example Sensor
  4. 3Summary
  5. 4Revision History

Mechanical Isolation

When multiple buttons are present in a system, it is possible for undesirable mechanical interaction between different buttons to occur. The LDC2112, LDC2114, LDC3114, and LDC3114-Q1 all have built-in algorithms to handle most of such crosstalk. However, good mechanical design principles should still be applied so that the crosstalk between adjacent buttons can be minimized. The following principles can be applied to reduce the mechanical crosstalk between adjacent buttons during an active press:

  1. Physical supports between buttons can facilitate larger metal deformation on the button that is pressed.
  2. Ensuring a larger physical deflection for the intended button. From an electrical perspective, a larger deflection enables a greater signal. Using a thinner metal or metal with a lower Young’s modulus facilitates button surface deformation and reduces the impact on the neighboring buttons.
  3. Increasing the distance or adding grooves between adjacent buttons improves mechanical isolation. For crosstalk minimization, button-to-button separation should also be greater than one coil diameter.