SNVS536F October   2007  – July 2015 LM2757

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Efficiency Performance
      2. 8.3.2 Soft Start
      3. 8.3.3 Thermal Shutdown
      4. 8.3.4 Current-Limit Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable and Voltage Mode Selection
      2. 8.4.2 Shutdown With Output High Impedance
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Switched-Capacitor Boost Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Recommended Capacitor Types
          2. 9.2.1.2.2 Output Capacitor And Output Voltage Ripple
          3. 9.2.1.2.3 Input Capacitor And Input Voltage Ripple
          4. 9.2.1.2.4 Flying Capacitors
          5. 9.2.1.2.5 Recommended Capacitance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 USB OTG / Mobile HDMI Power Supply
      3. 9.2.3 Supercapacitor Flash Driver
      4. 9.2.4 LED Driver
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
VIN pin: voltage to GND –0.3 6 V
M0, M1 pins: voltage to GND –0.3 6 V
Continuous power dissipation(4)
Internally Limited
Junction temperature, TJ-MAX 150 °C
Maximum lead temperature (soldering, 10 sec.) 265 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) All voltages are with respect to the potential at the GND pins.
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 145°C (typical) and disengages at TJ = 135°C (typical).

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(3)
MIN NOM MAX UNIT
Input voltage 2.7 5.5 °C
Junction temperature, TJ –30 110 °C
Ambient temperature, TA(2) –30 85 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJMAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

7.4 Thermal Information

THERMAL METRIC(1) LM2757 UNIT
YFQ (DSBGA)
12 PINS
RθJA Junction-to-ambient thermal resistance 75 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Unless otherwise specified, typical (TYP) limits in apply for TA = 25ºC; minimium (MIN) and maximum (MAX) limits apply over the full operating ambient temperature range (–30°C ≤ TA ≤ +85°C) . Unless otherwise noted, specifications apply to Typical Application with: VIN = 3.6 V, V(M0) = 0 V, V(M1) = VIN, CIN = C2 = 0.47 µF, CIN= COUT = 1 µF.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOUT Output voltage 3.2 V ≤ VIN ≤ 5.5 V
–30°C ≤ TA ≤ +60°C
IOUT = 0 to 180 mA
V(M0) = 0V, V(M1) = VIN
4.870
(−2.6%)
5 5.130
(2.6%)
V
3. V ≤ VIN ≤ 5.5 V
–30°C ≤ TA ≤ +85°C
IOUT = 0 to 150 mA
V(M0) = 0V, V(M1) = VIN
4.865
(−2.7%)
5 5.130
(2.6%)
3 V ≤ VIN ≤ 5.5 V
IOUT = 0 to 110 mA
V(M0) = VIN, V(M1) = 0 V
4.406
(–2.1%)
4.5 4.613
(2.5%)
3. V ≤ VIN ≤ 5.5 V
IOUT = 0 to 100 mA
V(M0) = VIN, V(M1) = VIN
3.985
(–2.8%)
4.1 4.223
(3%)
IQ Quiescent supply current V(M0) = 0 V, V(M1) = VIN (5 V)
IOUT = 0 mA
VIN = 3.6 V
2.4 2.79 mA
V(M0) = VIN, V(M1) = 0 V (4.5 V)
IOUT = 0 mA
VIN = 3.6 V
1.5 1.80
V(M0) = VIN, V(M1) = VIN (4.1 V)
IOUT = 0 mA
VIN = 3.6 V
1.3 1.65
ISD Shutdown supply current V(M0) = 0 V, V(M1) = 0 V
VIN = 3.6 V
1.1 2 µA
VR Output ivoltage rpple IOUT = 150 mA
V(M0) = 0V, V(M1) = VIN (5 V)
3 V ≤ VIN ≤ 5.5 V
20 mVp–p
ƒSW Switching frequency 3 V ≤ VIN ≤ 5.5 V 0.932 (–25%) 1.242 1.552 (+25%) MHz
VIN Logic input high Input pins: M1, M0
3 V ≤ VIN ≤ 5.5 V
1 VIN V
VIL Logic input low Input pins: M1, M0
3 V ≤ VIN ≤ 5.5 V
0 0.40 V
RPULLDOWN Logic input pulldown
resistance (M0, M1)
V(M1, M0) = 5.5 V 324 457
IIH Logic input high current Input Pins: M1, M0
V(M1, M0) = 1.8 V(5)
5 µA
IIL Logic input low current Input Pins: M1, M0
V(M1, M0) = 0 V
10 nA
VG Gain transition voltage 1.5× to 2×, V(M0) = VIN, V(M1) = 0 V 3.333 V
2× to 1.5×, V(M0) = VIN, V(M1) = 0 V 3.413 V
Hysteresis, V(M0) = VIN, V(M1) = 0 V 80 mV
1.5× to 2×, V(M0) = 0 V, V(M1) = VIN 3.87 V
2× to 1.5×, V(M0) = 0 V, V(M1) = VIN 3.93 V
Hysteresis, V(M0) = 0 V, V(M1) = VIN 60 mV
ISC Short-circuit output current VOUT = 0 V 250 mA
ION VOUT turnon time from shutdown (4) 300 µs
(1) All voltages are with respect to the potential at the GND pins.
(2) Minimum and maximum limits are specified by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(3) CIN, COUT, C1, C2: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(4) Turnon time is measured from when the M0 or M1 signal is pulled high until the output voltage crosses 90% of its final value.
(5) There is a 450-kΩ (typical) pulldown resistor connected internally to each logic input.

7.6 Typical Characteristics

Unless otherwise specified: VIN = 3.6 V, V(M0) = 0 V, V(M1) = VIN, C1 = C2 = 0.47 µF, CIN = COUT = 1 µF, TA = 25°C. Capacitors are low-ESR multi-layer ceramic capacitors (MLCC's).
LM2757 30033704.png
5-V Mode
Figure 1. Efficiency vs. Input Voltage
LM2757 30033706.png
4.1-V Mode
Figure 3. Efficiency vs. Input Voltage
LM2757 30033708.png
4.5-V Mode
Figure 5. Output Voltage vs. Output Current
LM2757 30033710.png
5-V Mode
Figure 7. Output Voltage Ripple vs. Output Current
LM2757 30033712.png
4.5-V Mode
Figure 9. Output Voltage vs. Input Voltage
LM2757 30033714.png
Figure 11. Output Leakage Current, Device Shutdown
LM2757 30033715.png
Figure 13. Current Limit vs. Input Voltage
LM2757 30033717.png
Figure 15. Operating Current vs. Input Voltage
LM2757 30033719.png
VIN = 3.6 V Load = 200 mA Time scale: 100 µs/Div
CH2: VOUT; Scale: 1V/Div, DC Coupled
CH4: IIN; Scale: 200 mA/Div, DC Coupled
       
Figure 17. Start-up Behavior, 5-V Mode
LM2757 30033721.png
VOUT = 5-V Mode VBATT = 4 V Time scale: 10 µs/Div
CH1: VOUT; Scale: 50mV/Div, AC Coupled
CH4: IOUT; Scale: 100mA/Div, DC Coupled
       
Figure 19. Load Step With Li-Ion Battery, 10 mA to 200 mA
LM2757 30033705.png
4.5-V Mode
Figure 2. Efficiency vs. Input Voltage
LM2757 30033707.png
5-V Mode
Figure 4. Output Voltage vs. Output Current
LM2757 30033709.png
4.1-V Mode
Figure 6. Output Voltage vs. Output Current
LM2757 30033711.png
5-V Mode
Figure 8. Output Voltage vs. Input Voltage
LM2757 30033713.png
4.1-V Mode
Figure 10. Output Voltage vs. Input Voltage
LM2757 30033727.png
Figure 12. Output Leakage Current, Device Shutdown
LM2757 30033716.png
Figure 14. Oscillator Frequency vs. Input Voltage
LM2757 30033718.png
Figure 16. Shutdown Supply Current vs. Input Voltage
LM2757 30033720.png
VOUT = 5-V Mode Load = 200 mA Time scale: 100 µs/Div
CH1: VIN; Scale: 1V/Div, DC Coupled
CH2: VOUT; Scale: 100mV/Div, AC Coupled
       
Figure 18. Line Step, 3.5 V to 4 V
LM2757 30033722.png
VOUT = 5-V Mode VBATT = 4 V Time scale: 10 µs/Div
CH1: VOUT; Scale: 50mV/Div, AC Coupled
CH4: IOUT; Scale: 100mA/Div, DC Coupled
       
Figure 20. Load Step With Li-Ion Battery 200 mA to 10 mA