SPNU118Z September   1995  – March 2023 66AK2E05 , 66AK2H06 , 66AK2H12 , 66AK2H14 , AM1705 , AM1707 , AM1802 , AM1806 , AM1808 , AM1810 , AM5K2E04 , OMAP-L132 , OMAP-L137 , OMAP-L138 , SM470R1B1M-HT , TMS470R1A288 , TMS470R1A384 , TMS470R1A64 , TMS470R1B1M , TMS470R1B512 , TMS470R1B768

 

  1.   Read This First
    1.     About This Manual
    2.     How to Use This Manual
    3.     Notational Conventions
    4.     Related Documentation From Texas Instruments
    5.     Trademarks
  2. Introduction to the Software Development Tools
    1. 1.1 Software Development Tools Overview
    2. 1.2 Tools Descriptions
  3. Introduction to Object Modules
    1. 2.1 Object File Format Specifications
    2. 2.2 Executable Object Files
    3. 2.3 Introduction to Sections
      1. 2.3.1 Special Section Names
    4. 2.4 How the Assembler Handles Sections
      1. 2.4.1 Uninitialized Sections
      2. 2.4.2 Initialized Sections
      3. 2.4.3 User-Named Sections
      4. 2.4.4 Current Section
      5. 2.4.5 Section Program Counters
      6. 2.4.6 Subsections
      7. 2.4.7 Using Sections Directives
    5. 2.5 How the Linker Handles Sections
      1. 2.5.1 Combining Input Sections
      2. 2.5.2 Placing Sections
    6. 2.6 Symbols
      1. 2.6.1 Global (External) Symbols
      2. 2.6.2 Local Symbols
      3. 2.6.3 Weak Symbols
      4. 2.6.4 The Symbol Table
    7. 2.7 Symbolic Relocations
    8. 2.8 Loading a Program
  4. Program Loading and Running
    1. 3.1 Loading
      1. 3.1.1 Load and Run Addresses
      2. 3.1.2 Bootstrap Loading
        1. 3.1.2.1 Boot, Load, and Run Addresses
        2. 3.1.2.2 Primary Bootloader
        3. 3.1.2.3 Secondary Bootloader
        4. 3.1.2.4 Boot Table
        5. 3.1.2.5 Bootloader Routine
          1. 3.1.2.5.1 Sample Secondary Bootloader Routine
    2. 3.2 Entry Point
    3. 3.3 Run-Time Initialization
      1. 3.3.1 The _c_int00 Function
      2. 3.3.2 RAM Model vs. ROM Model
        1. 3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)
        2. 3.3.2.2 Initializing Variables at Load Time (--ram_model)
        3. 3.3.2.3 The --rom_model and --ram_model Linker Options
      3. 3.3.3 About Linker-Generated Copy Tables
        1. 3.3.3.1 BINIT
        2. 3.3.3.2 CINIT
    4. 3.4 Arguments to main
    5. 3.5 Run-Time Relocation
    6. 3.6 Additional Information
  5. Assembler Description
    1. 4.1  Assembler Overview
    2. 4.2  The Assembler's Role in the Software Development Flow
    3. 4.3  Invoking the Assembler
    4. 4.4  Controlling Application Binary Interface
    5. 4.5  Naming Alternate Directories for Assembler Input
      1. 4.5.1 Using the --include_path Assembler Option
      2. 4.5.2 Using the TI_ARM_A_DIR Environment Variable
    6. 4.6  Source Statement Format
      1. 4.6.1 Label Field
      2. 4.6.2 Mnemonic Field
      3. 4.6.3 Operand Field
        1. 4.6.3.1 Operand Syntaxes for Instructions
        2. 4.6.3.2 Immediate Values as Operands for Directives
      4. 4.6.4 Comment Field
    7. 4.7  Literal Constants
      1. 4.7.1 Integer Literals
        1. 4.7.1.1 Binary Integer Literals
        2. 4.7.1.2 Octal Integer Literals
        3. 4.7.1.3 Decimal Integer Literals
        4. 4.7.1.4 Hexadecimal Integer Literals
        5. 4.7.1.5 Character Literals
      2. 4.7.2 Character String Literals
      3. 4.7.3 Floating-Point Literals
    8. 4.8  Assembler Symbols
      1. 4.8.1 Identifiers
      2. 4.8.2 Labels
      3. 4.8.3 Local Labels
        1. 4.8.3.1 Local Labels of the Form $n
        2.       85
        3.       86
      4. 4.8.4 Symbolic Constants
      5. 4.8.5 Defining Symbolic Constants (--asm_define Option)
      6. 4.8.6 Predefined Symbolic Constants
      7. 4.8.7 Registers
      8. 4.8.8 Substitution Symbols
    9. 4.9  Expressions
      1. 4.9.1 Mathematical and Logical Operators
      2. 4.9.2 Relational Operators and Conditional Expressions
      3. 4.9.3 Well-Defined Expressions
      4. 4.9.4 Relocatable Symbols and Legal Expressions
      5. 4.9.5 Expression Examples
    10. 4.10 Built-in Functions and Operators
      1. 4.10.1 Built-In Math and Trigonometric Functions
    11. 4.11 Unified Assembly Language Syntax Support
    12. 4.12 Source Listings
    13. 4.13 Debugging Assembly Source
    14. 4.14 Cross-Reference Listings
  6. Assembler Directives
    1. 5.1  Directives Summary
    2. 5.2  Directives that Define Sections
    3. 5.3  Directives that Change the Instruction Type
    4. 5.4  Directives that Initialize Values
    5. 5.5  Directives that Perform Alignment and Reserve Space
    6. 5.6  Directives that Format the Output Listings
    7. 5.7  Directives that Reference Other Files
    8. 5.8  Directives that Enable Conditional Assembly
    9. 5.9  Directives that Define Union or Structure Types
    10. 5.10 Directives that Define Enumerated Types
    11. 5.11 Directives that Define Symbols at Assembly Time
    12. 5.12 Miscellaneous Directives
    13. 5.13 Directives Reference
      1.      .align
      2.      .asg/.define/.eval
      3.      .asmfunc/.endasmfunc
      4.      .bits
      5.      .bss
      6.      .byte/.ubyte/.char/.uchar
      7.      .cdecls
      8.      .common
      9.      .copy/.include
      10.      .cstruct/.cunion/.endstruct/.endunion/.tag
      11.      .data
      12.      .double
      13.      .drlist/.drnolist
      14.      .elfsym
      15.      .emsg/.mmsg/.wmsg
      16.      .end
      17.      .fclist/.fcnolist
      18.      .field
      19.      .float
      20.      .global/.def/.ref
      21.      .group/.gmember/.endgroup
      22.      .half/.short/.uhalf/.ushort
      23.      .if/.elseif/.else/.endif
      24.      .int/.unint/.long/.ulong/.word/.uword
      25.      .label
      26.      .length/.width
      27.      .list/.nolist
      28.      .loop/.endloop/.break
      29.      .macro/.endm
      30.      .mlib
      31.      .mlist/.mnolist
      32.      .newblock
      33.      .option
      34.      .page
      35.      .retain / .retainrefs
      36.      .sect
      37.      .set/.equ
      38.      .space/.bes
      39.      .sslist/.ssnolist
      40.      .state16
      41.      .state32/.arm
      42.      .string/.cstring
      43.      .struct/.endstruct/.tag
      44.      .symdepend
      45.      .tab
      46.      .text
      47.      .thumb
      48.      .title
      49.      .unasg/.undefine
      50.      .union/.endunion/.tag
      51.      .usect
      52.      .var
      53.      .weak
  7. Macro Language Description
    1. 6.1  Using Macros
    2. 6.2  Defining Macros
    3. 6.3  Macro Parameters/Substitution Symbols
      1. 6.3.1 Directives That Define Substitution Symbols
      2. 6.3.2 Built-In Substitution Symbol Functions
      3. 6.3.3 Recursive Substitution Symbols
      4. 6.3.4 Forced Substitution
      5. 6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
      6. 6.3.6 Substitution Symbols as Local Variables in Macros
    4. 6.4  Macro Libraries
    5. 6.5  Using Conditional Assembly in Macros
    6. 6.6  Using Labels in Macros
    7. 6.7  Producing Messages in Macros
    8. 6.8  Using Directives to Format the Output Listing
    9. 6.9  Using Recursive and Nested Macros
    10. 6.10 Macro Directives Summary
  8. Archiver Description
    1. 7.1 Archiver Overview
    2. 7.2 The Archiver's Role in the Software Development Flow
    3. 7.3 Invoking the Archiver
    4. 7.4 Archiver Examples
    5. 7.5 Library Information Archiver Description
      1. 7.5.1 Invoking the Library Information Archiver
      2. 7.5.2 Library Information Archiver Example
      3. 7.5.3 Listing the Contents of an Index Library
      4. 7.5.4 Requirements
  9. Linker Description
    1. 8.1  Linker Overview
    2. 8.2  The Linker's Role in the Software Development Flow
    3. 8.3  Invoking the Linker
    4. 8.4  Linker Options
      1. 8.4.1  Wildcards in File, Section, and Symbol Patterns
      2. 8.4.2  Specifying C/C++ Symbols with Linker Options
      3. 8.4.3  Relocation Capabilities (--absolute_exe and --relocatable Options)
        1. 8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)
        2. 8.4.3.2 Producing a Relocatable Output Module (--relocatable option)
      4. 8.4.4  Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
      5. 8.4.5  Changing Encoding of Big-Endian Instructions
      6. 8.4.6  Compression (--cinit_compression and --copy_compression Option)
      7. 8.4.7  Compress DWARF Information (--compress_dwarf Option)
      8. 8.4.8  Control Linker Diagnostics
      9. 8.4.9  Automatic Library Selection (--disable_auto_rts Option)
      10. 8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)
      11. 8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
      12. 8.4.12 Error Correcting Code Testing (--ecc Options)
      13. 8.4.13 Define an Entry Point (--entry_point Option)
      14. 8.4.14 Set Default Fill Value (--fill_value Option)
      15. 8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)
      16. 8.4.16 Define Heap Size (--heap_size Option)
      17. 8.4.17 Hiding Symbols
      18. 8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C_DIR )
        1. 8.4.18.1 Name an Alternate Library Directory (--search_path Option)
        2. 8.4.18.2 Name an Alternate Library Directory ( TI_ARM_C_DIR Environment Variable)
        3. 8.4.18.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)
      19. 8.4.19 Change Symbol Localization
        1. 8.4.19.1 Make All Global Symbols Static (--make_static Option)
      20. 8.4.20 Create a Map File (--map_file Option)
      21. 8.4.21 Managing Map File Contents (--mapfile_contents Option)
      22. 8.4.22 Disable Name Demangling (--no_demangle)
      23. 8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)
      24. 8.4.24 Strip Symbolic Information (--no_symtable Option)
      25. 8.4.25 Name an Output Module (--output_file Option)
      26. 8.4.26 Prioritizing Function Placement (--preferred_order Option)
      27. 8.4.27 C Language Options (--ram_model and --rom_model Options)
      28. 8.4.28 Retain Discarded Sections (--retain Option)
      29. 8.4.29 Create an Absolute Listing File (--run_abs Option)
      30. 8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
      31. 8.4.31 Define Stack Size (--stack_size Option)
      32. 8.4.32 Mapping of Symbols (--symbol_map Option)
      33. 8.4.33 Generate Far Call Trampolines (--trampolines Option)
        1. 8.4.33.1 Advantages and Disadvantages of Using Trampolines
        2. 8.4.33.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
        3. 8.4.33.3 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)
        4. 8.4.33.4 Carrying Trampolines From Load Space to Run Space
      34. 8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)
      35. 8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections)
      36. 8.4.36 Generate XML Link Information File (--xml_link_info Option)
      37. 8.4.37 Zero Initialization (--zero_init Option)
    5. 8.5  Linker Command Files
      1. 8.5.1  Reserved Names in Linker Command Files
      2. 8.5.2  Constants in Linker Command Files
      3. 8.5.3  Accessing Files and Libraries from a Linker Command File
      4. 8.5.4  The MEMORY Directive
        1. 8.5.4.1 Default Memory Model
        2. 8.5.4.2 MEMORY Directive Syntax
        3. 8.5.4.3 Expressions and Address Operators
        4. 8.5.4.4 The ALIAS Statement
      5. 8.5.5  The SECTIONS Directive
        1. 8.5.5.1 SECTIONS Directive Syntax
        2. 8.5.5.2 Section Allocation and Placement
          1. 8.5.5.2.1 Example: Placing Functions in RAM
          2. 8.5.5.2.2 Binding
          3. 8.5.5.2.3 Named Memory
          4. 8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier
            1. 8.5.5.2.4.1 Linker Placement With the HIGH Specifier
            2.         267
            3. 8.5.5.2.4.2 Linker Placement Without HIGH Specifier
          5. 8.5.5.2.5 Alignment and Blocking
          6. 8.5.5.2.6 Alignment With Padding
        3. 8.5.5.3 Specifying Input Sections
          1. 8.5.5.3.1 The Most Common Method of Specifying Section Contents
          2.        273
        4. 8.5.5.4 Using Multi-Level Subsections
        5. 8.5.5.5 Specifying Library or Archive Members as Input to Output Sections
          1. 8.5.5.5.1 Archive Members to Output Sections
          2.        277
        6. 8.5.5.6 Allocation Using Multiple Memory Ranges
        7. 8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges
      6. 8.5.6  Placing a Section at Different Load and Run Addresses
        1. 8.5.6.1 Specifying Load and Run Addresses
        2.       282
        3. 8.5.6.2 Referring to the Load Address by Using the .label Directive
      7. 8.5.7  Using GROUP and UNION Statements
        1. 8.5.7.1 Grouping Output Sections Together
        2. 8.5.7.2 Overlaying Sections With the UNION Statement
        3. 8.5.7.3 Using Memory for Multiple Purposes
        4. 8.5.7.4 Nesting UNIONs and GROUPs
        5. 8.5.7.5 Checking the Consistency of Allocators
        6. 8.5.7.6 Naming UNIONs and GROUPs
      8. 8.5.8  Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
      9. 8.5.9  Configuring Error Correcting Code (ECC) with the Linker
        1. 8.5.9.1 Using the ECC Specifier in the Memory Map
        2. 8.5.9.2 Using the ECC Directive
        3. 8.5.9.3 Using the VFILL Specifier in the Memory Map
      10. 8.5.10 Assigning Symbols at Link Time
        1. 8.5.10.1 Syntax of Assignment Statements
        2. 8.5.10.2 Assigning the SPC to a Symbol
        3. 8.5.10.3 Assignment Expressions
        4. 8.5.10.4 Symbols Automatically Defined by the Linker
        5. 8.5.10.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
        6. 8.5.10.6 Why the Dot Operator Does Not Always Work
        7. 8.5.10.7 Address and Dimension Operators
          1. 8.5.10.7.1 Input Items
          2. 8.5.10.7.2 Output Section
          3. 8.5.10.7.3 GROUPs
          4. 8.5.10.7.4 UNIONs
        8. 8.5.10.8 LAST Operator
      11. 8.5.11 Creating and Filling Holes
        1. 8.5.11.1 Initialized and Uninitialized Sections
        2. 8.5.11.2 Creating Holes
        3. 8.5.11.3 Filling Holes
        4. 8.5.11.4 Explicit Initialization of Uninitialized Sections
    6. 8.6  Linker Symbols
      1. 8.6.1 Linker-Defined Functions and Arrays
      2. 8.6.2 Linker-Defined Integer Values
      3. 8.6.3 Linker-Defined Addresses
      4. 8.6.4 More About the _symval Operator
      5. 8.6.5 Weak Symbols
        1. 8.6.5.1 Weak Symbol References
        2. 8.6.5.2 Weak Symbol Definitions
      6. 8.6.6 Resolving Symbols with Object Libraries
    7. 8.7  Default Placement Algorithm
      1. 8.7.1 How the Allocation Algorithm Creates Output Sections
      2. 8.7.2 Reducing Memory Fragmentation
    8. 8.8  Using Linker-Generated Copy Tables
      1. 8.8.1 Using Copy Tables for Boot Loading
      2. 8.8.2 Using Built-in Link Operators in Copy Tables
      3. 8.8.3 Overlay Management Example
      4. 8.8.4 Generating Copy Tables With the table() Operator
        1. 8.8.4.1 The table() Operator
        2. 8.8.4.2 Boot-Time Copy Tables
        3. 8.8.4.3 Using the table() Operator to Manage Object Components
        4. 8.8.4.4 Linker-Generated Copy Table Sections and Symbols
        5. 8.8.4.5 Splitting Object Components and Overlay Management
      5. 8.8.5 Compression
        1. 8.8.5.1 Compressed Copy Table Format
        2. 8.8.5.2 Compressed Section Representation in the Object File
        3. 8.8.5.3 Compressed Data Layout
        4. 8.8.5.4 Run-Time Decompression
        5. 8.8.5.5 Compression Algorithms
        6.       342
      6. 8.8.6 Copy Table Contents
      7. 8.8.7 General Purpose Copy Routine
    9. 8.9  Linker-Generated CRC Tables
      1. 8.9.1 Using the crc_table() Operator in the SECTIONS Directive
        1. 8.9.1.1 Restrictions when using the crc_table() Operator
        2. 8.9.1.2 Examples
          1. 8.9.1.2.1 Using crc_table() Operator to Compute the CRC Value for .text Data
          2.        350
          3. 8.9.1.2.2 Specifying an Algorithm in the crc_table() Operator
          4.        352
          5. 8.9.1.2.3 Using a Single Table for Multiple Sections
          6.        354
          7. 8.9.1.2.4 Applying the crc_table() Operator to a GROUP or UNION
          8.        356
        3. 8.9.1.3 Interface When Using the crc_table() Operator
          1. 8.9.1.3.1 The CRC Table Header, crc_tbl.h
          2. 8.9.1.3.2 General Purpose CRC Check Routine
      2. 8.9.2 A Note on the TMS570_CRC64_ISO Algorithm
    10. 8.10 Partial (Incremental) Linking
    11. 8.11 Linking C/C++ Code
      1. 8.11.1 Run-Time Initialization
      2. 8.11.2 Object Libraries and Run-Time Support
      3. 8.11.3 Setting the Size of the Stack and Heap Sections
      4. 8.11.4 Initializing and AutoInitialzing Variables at Run Time
      5. 8.11.5 Initialization of Cinit and Watchdog Timer Hold
    12. 8.12 Linker Example
  10. Absolute Lister Description
    1. 9.1 Producing an Absolute Listing
    2. 9.2 Invoking the Absolute Lister
    3. 9.3 Absolute Lister Example
  11. 10Cross-Reference Lister Description
    1. 10.1 Producing a Cross-Reference Listing
    2. 10.2 Invoking the Cross-Reference Lister
    3. 10.3 Cross-Reference Listing Example
  12. 11Object File Utilities
    1. 11.1 Invoking the Object File Display Utility
    2. 11.2 Invoking the Disassembler
      1. 11.2.1 Object File memcpy32.asm
      2.      381
      3. 11.2.2 Disassembly From memcpy32.asm
      4.      383
      5. 11.2.3 Partial Copy Record Output With Different Load and Run Address
    3. 11.3 Invoking the Name Utility
    4. 11.4 Invoking the Strip Utility
  13. 12Hex Conversion Utility Description
    1. 12.1  The Hex Conversion Utility's Role in the Software Development Flow
    2. 12.2  Invoking the Hex Conversion Utility
      1. 12.2.1 Invoking the Hex Conversion Utility From the Command Line
      2. 12.2.2 Invoking the Hex Conversion Utility With a Command File
    3. 12.3  Understanding Memory Widths
      1. 12.3.1 Target Width
      2. 12.3.2 Specifying the Memory Width
      3. 12.3.3 Partitioning Data Into Output Files
    4. 12.4  The ROMS Directive
      1. 12.4.1 When to Use the ROMS Directive
      2. 12.4.2 An Example of the ROMS Directive
    5. 12.5  The SECTIONS Directive
    6. 12.6  The Load Image Format (--load_image Option)
      1. 12.6.1 Load Image Section Formation
      2. 12.6.2 Load Image Characteristics
    7. 12.7  Excluding a Specified Section
    8. 12.8  Assigning Output Filenames
    9. 12.9  Image Mode and the --fill Option
      1. 12.9.1 Generating a Memory Image
      2. 12.9.2 Specifying a Fill Value
      3. 12.9.3 Steps to Follow in Using Image Mode
    10. 12.10 Array Output Format
    11. 12.11 Building a Table for an On-Chip Boot Loader
      1. 12.11.1 Description of the Boot Table
      2. 12.11.2 The Boot Table Format
      3. 12.11.3 How to Build the Boot Table
        1. 12.11.3.1 Building the Boot Table
        2. 12.11.3.2 Leaving Room for the Boot Table
      4. 12.11.4 Booting From a Device Peripheral
      5. 12.11.5 Setting the Entry Point for the Boot Table
      6. 12.11.6 Using the ARM Boot Loader
        1. 12.11.6.1 Sample Command File for Booting From 8-Bit SPI Boot
        2.       420
        3. 12.11.6.2 Sample Command File for ARM 16-Bit Parallel Boot GP I/O
        4.       422
    12. 12.12 Using Secure Flash Boot on TMS320F2838x Devices
    13. 12.13 Controlling the ROM Device Address
    14. 12.14 Control Hex Conversion Utility Diagnostics
    15. 12.15 Description of the Object Formats
      1. 12.15.1 ASCII-Hex Object Format (--ascii Option)
      2. 12.15.2 Intel MCS-86 Object Format (--intel Option)
      3. 12.15.3 Motorola Exorciser Object Format (--motorola Option)
      4. 12.15.4 Extended Tektronix Object Format (--tektronix Option)
      5. 12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
      6. 12.15.6 TI-TXT Hex Format (--ti_txt Option)
        1. 12.15.6.1 TI-TXT Object Format
  14. 13Sharing C/C++ Header Files With Assembly Source
    1. 13.1 Overview of the .cdecls Directive
    2. 13.2 Notes on C/C++ Conversions
      1. 13.2.1  Comments
      2. 13.2.2  Conditional Compilation (#if/#else/#ifdef/etc.)
      3. 13.2.3  Pragmas
      4. 13.2.4  The #error and #warning Directives
      5. 13.2.5  Predefined symbol __ASM_HEADER__
      6. 13.2.6  Usage Within C/C++ asm( ) Statements
      7. 13.2.7  The #include Directive
      8. 13.2.8  Conversion of #define Macros
      9. 13.2.9  The #undef Directive
      10. 13.2.10 Enumerations
      11. 13.2.11 C Strings
      12. 13.2.12 C/C++ Built-In Functions
      13. 13.2.13 Structures and Unions
      14. 13.2.14 Function/Variable Prototypes
      15. 13.2.15 C Constant Suffixes
      16. 13.2.16 Basic C/C++ Types
    3. 13.3 Notes on C++ Specific Conversions
      1. 13.3.1 Name Mangling
      2. 13.3.2 Derived Classes
      3. 13.3.3 Templates
      4. 13.3.4 Virtual Functions
    4. 13.4 Special Assembler Support
      1. 13.4.1 Enumerations (.enum/.emember/.endenum)
      2. 13.4.2 The .define Directive
      3. 13.4.3 The .undefine/.unasg Directives
      4. 13.4.4 The $$defined( ) Built-In Function
      5. 13.4.5 The $$sizeof Built-In Function
      6. 13.4.6 Structure/Union Alignment and $$alignof( )
      7. 13.4.7 The .cstring Directive
  15.   A Symbolic Debugging Directives
    1.     A.1 DWARF Debugging Format
    2.     A.2 Debug Directive Syntax
  16.   B XML Link Information File Description
    1.     B.1 XML Information File Element Types
    2.     B.2 Document Elements
      1.      B.2.1 Header Elements
      2.      B.2.2 Input File List
      3.      B.2.3 Object Component List
      4.      B.2.4 Logical Group List
      5.      B.2.5 Placement Map
      6.      B.2.6 Far Call Trampoline List
      7.      B.2.7 Symbol Table
  17.   C Hex Conversion Utility Examples
    1.     C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM
      1.      C.1.1 Linker Command File and Link Map for Scenario 1
      2.      482
      3.      C.1.2 Hex Conversion Command File for Scenario 1
      4.      484
      5.      C.1.3 Contents of Hex Map File example1.mxp
    2.     C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code
      1.      C.2.1 Linker Command File for Scenario 2
      2.      488
      3.      C.2.2 Hex Conversion Command File for Scenario 2
      4.      490
      5.      C.2.3 Contents of Hex Map File example2.mxp
    3.     C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs
      1.      C.3.1 Linker Command File for Scenario 3
      2.      494
      3.      C.3.2 Hex Conversion Command File for Scenario 3
      4.      496
      5.      C.3.3 Contents of Hex Map File example3.mxp
      6.      498
  18.   D Glossary
    1.     D.1 Terminology
  19.   E Revision History
  20.   E Earlier Revisions

Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code and data in target memory. For example, you may want to place a specific data object from a specific file into a specific location in target memory. This is simple to do using the available LCF syntax to reference the desired object file or library. However, a problem that many developers run into when they try to do this is a linker generated "file not found" error when accessing an object file or library from inside the LCF that has been specified earlier in the command-line invocation of the linker. Most often, this error occurs because the syntax used to access the file on the linker command-line does not match the syntax that is used to access the same file in the LCF.

Consider a simple example. Imagine that you have an application that requires a table of constants called "app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object is defined in a .data section that resides in an object file, app_coeffs.c.obj. The app_coeffs.c.obj file is then included in the object file library app_data.lib. In your LCF, you can control the placement of the "app_coeffs" data object as follows:

SECTIONS
{
   ...
   .coeffs: { app_data.lib<app_coeffs.c.obj>(.data) } > DDR
   ...
}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you are building the application. In order to gain access to app_data.lib from the build command-line, you can use a combination of the –i and –l options to set up a directory search path which the linker can use to find the app_data.lib library:

%> armcl <compile options/files> -z -i ./lib -l app_data.lib mylnk.cmd <link options/files>

The –i option adds the lib sub-directory to the directory search path and the –l option instructs the linker to look through the directories in the directory search path to find the app_data.lib library. However, if you do not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and generate a "file not found" error. The reason is that when the linker encounters the reference to app_data.lib inside the SECTIONS directive, there is no –l option preceding the reference. Therefore, the linker tries to open app_data.lib in the current working directory.  

In essence, the linker has a few different ways of opening files:

  • If there is a path specified, the linker will look for the file in the specified location. For an absolute path, the linker will try to open the file in the specified directory. For a relative path, the linker will follow the specified path starting from the current working directory and try to open the file at that location.
  • If there is no path specified, the linker will try to open the file in the current working directory.
  • If a –l option precedes the file reference, then the linker will try to find and open the referenced file in one of the directories in the directory search path. The directory search path is set up via –i options and environment variables (like C_DIR and ).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable LCFs, the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a –l option in front of the reference to app_data.lib in mylnk.cmd to ensure that the linker will find and open the app_data.lib library when the application is built:

SECTIONS
{
   ...
   .coeffs: { -l app_data.lib<app_coeffs.c.obj>(.data) } > DDR
   ...
}

Another benefit to using the –l option when referencing a file from within an LCF is that if the location of the referenced file changes, you can modify the directory search path to incorporate the new location of the file (using –i option on the command line, for example) without having to modify the LCF.