SPRACT7 August   2020 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Fundamental Theories of FOC and Current Measurement
    1. 2.1 Basic Theory of FOC
    2. 2.2 Current Sensing Technique
      1. 2.2.1 Low-Side Current Measurement
        1. 2.2.1.1 Three-Shunt Current Sensing
        2. 2.2.1.2 Dual-Shunt Current Sensing
        3. 2.2.1.3 Single-Shunt Current Sensing
  5. 3Implementation of Single-Shunt Phase Current Reconstruction
    1. 3.1 Duty Cycle Compensation
    2. 3.2 PWM Phase Shift Compensation
    3. 3.3 Current Reconstruction
  6. 4Sensorless FOC With Single-Shunt Measurement
  7. 5Hardware Consideration for Single-Shunt Current Sensing
    1. 5.1 Slew Rate
    2. 5.2 Current Sensing Circuit
  8. 6Test Results
  9. 7Summary
  10. 8References

Low-Side Current Measurement

The low side current sensing topologies use a resistor located at the base of the phase or at the DC bus return path to measure current that is flowing through a phase. Regardless of the resistor configuration used (one-, two-, or three-shunt), current can only be measured when a lower switch is ON. The current signal must be clean to properly sample the current. A clean current signal or representation of the current signal must have no ringing or noise. The following subsections detail different current measurement techniques for resistor shunts that are used in the field.