SPRAD06B March   2022  – November 2024 AM620-Q1 , AM623 , AM625 , AM625-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Overview
    1. 1.1 Board Designs Supported
    2. 1.2 General Board Layout Guidelines
    3. 1.3 PCB Stack-Up
    4. 1.4 Bypass Capacitors
      1. 1.4.1 Bulk Bypass Capacitors
      2. 1.4.2 High-Speed Bypass Capacitors
      3. 1.4.3 Return Current Bypass Capacitors
    5. 1.5 Velocity Compensation
  5. 2DDR4 Board Design and Layout Guidance
    1. 2.1  DDR4 Introduction
    2. 2.2  DDR4 Device Implementations Supported
    3. 2.3  DDR4 Interface Schematics
      1. 2.3.1 DDR4 Implementation Using 16-Bit SDRAM Devices
      2. 2.3.2 DDR4 Implementation Using 8-Bit SDRAM Devices
    4. 2.4  Compatible JEDEC DDR4 Devices
    5. 2.5  Placement
    6. 2.6  DDR4 Keepout Region
    7. 2.7  DBI
    8. 2.8  VPP
    9. 2.9  Net Classes
    10. 2.10 DDR4 Signal Termination
    11. 2.11 VREF Routing
    12. 2.12 VTT
    13. 2.13 POD Interconnect
    14. 2.14 CK and ADDR_CTRL Topologies and Routing Guidance
    15. 2.15 Data Group Topologies and Routing Guidance
    16. 2.16 CK and ADDR_CTRL Routing Specification
      1. 2.16.1 CACLM - Clock Address Control Longest Manhattan Distance
      2. 2.16.2 CK and ADDR_CTRL Routing Limits
    17. 2.17 Data Group Routing Specification
      1. 2.17.1 DQLM - DQ Longest Manhattan Distance
      2. 2.17.2 Data Group Routing Limits
    18. 2.18 Bit Swapping
      1. 2.18.1 Data Bit Swapping
      2. 2.18.2 Address and Control Bit Swapping
  6. 3LPDDR4 Board Design and Layout Guidance
    1. 3.1  LPDDR4 Introduction
    2. 3.2  LPDDR4 Device Implementations Supported
    3. 3.3  LPDDR4 Interface Schematics
    4. 3.4  Compatible JEDEC LPDDR4 Devices
    5. 3.5  Placement
    6. 3.6  LPDDR4 Keepout Region
    7. 3.7  LPDDR4 DBI
    8. 3.8  Net Classes
    9. 3.9  LPDDR4 Signal Termination
    10. 3.10 LPDDR4 VREF Routing
    11. 3.11 LPDDR4 VTT
    12. 3.12 CK0 and ADDR_CTRL Topologies
    13. 3.13 Data Group Topologies
    14. 3.14 CK0 and ADDR_CTRL Routing Specification
    15. 3.15 Data Group Routing Specification
    16. 3.16 Byte and Bit Swapping
  7. 4LPDDR4 Board Design Simulations
    1. 4.1 Board Model Extraction
    2. 4.2 Board-Model Validation
    3. 4.3 S-Parameter Inspection
    4. 4.4 Time Domain Reflectometry (TDR) Analysis
    5. 4.5 System Level Simulation
      1. 4.5.1 Simulation Setup
      2. 4.5.2 Simulation Parameters
      3. 4.5.3 Simulation Targets
        1. 4.5.3.1 Eye Quality
        2. 4.5.3.2 Delay Report
        3. 4.5.3.3 Mask Report
    6. 4.6 Design Example
      1. 4.6.1 Stack-Up
      2. 4.6.2 Routing
      3. 4.6.3 Model Verification
      4. 4.6.4 Simulation Results
  8. 5Appendix: AM62x ALW and AMC Package Delays
  9. 6Revision History

Mask Report

The minimum jitter and noise margins are to be captured with respect to the eye mask(s). This masks are data rate dependent, and includes:

  • Data read eye mask at the SOC die pad for functionality testing
  • Data write eye mask (JEDEC spec) at the DRAM pin/BGA for compliance testing
  • CA bus eye mask (JEDEC spec) at the DRAM pin/BGA for compliance testing

There should be at least 2 sets of eye diagrams generated by the simulator:

  • Vref set to the optimal Vref of the byte offset by the Vref_set_tol in the positive direction (Vref_set_tol is defined in JEDEC spec)
  • Vref set to the optimal Vref of the byte offset by the Vref_set_tol in the negative direction

The system-level margins are the worst case noise and jitter margins from all eye diagram measurements listed above (across SSHT and FFLT corners). For all waveforms captured at the DRAM device, margins should be calculated at both the BGA pin and the DRAM pad.

Table 4-3 LPDDR4 Eye Mask Definitions/Requirements
Parameter Mask Shape LPDDR4-1600 LPDDR4-3200 LPDDR4-3733
CA eye mask TcIVW Rectangular (1) 0.3 UI 0.3 UI (1) (2)
CA eye mask VcIVW Rectangular (1) 175 mV 155 mV (1) (2)
Write eye mask TdIVW Rectangular (1) 0.22 UI 0.25 UI (1) (2)
Write eye mask VdIVW Rectangular (1) 140 mV 140 mV (1) (2)
Read eye mask TdIVW Diamond 0.42 UI 0.61 UI 0.66 UI
Read eye mask VdIVW Diamond 140 mV 140 mV 140 mV
Copied from JEDEC specification: Low Power Double Date Rate 4 (LPDDR4).
For details, contact the DRAM vendor.

Figure 4-4 through Figure 4-6 show the eye mask definitions translated to eye diagrams within captured waveforms.

 Example  Simulated LPDDR4-4266
                    Read Eye With Diamond-Shaped Eye Mask Figure 4-4 Example Simulated LPDDR4-4266 Read Eye With Diamond-Shaped Eye Mask
 Example Simulated LPDDR4-4266
                    Write Eye With Rectangular JEDEC Eye Mask Figure 4-5 Example Simulated LPDDR4-4266 Write Eye With Rectangular JEDEC Eye Mask
 Example  Simulated LPDDR4-4266
                    CA Eye With Rectangular JEDEC Eye Mask Figure 4-6 Example Simulated LPDDR4-4266 CA Eye With Rectangular JEDEC Eye Mask