SPRAD59 October   2023 TMS320F280039

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
  5. Key Differences Between DCAN and MCAN
  6. Module Initialization
    1. 3.1 DCAN Initialization
    2. 3.2 MCAN Initialization
    3. 3.3 Initialization sequence
    4. 3.4 Code Snippets for Module Initialization
  7. Bit Timing Configuration
  8. Message RAM Configuration
  9. Interrupt handling
    1. 6.1 MCAN Interrupt Sources
    2. 6.2 DCAN Interrupt Handling
    3. 6.3 MCAN Interrupt Handling
  10. Transmitting data
    1. 7.1 Basic Transmission Process
      1. 7.1.1 Transmission with DCAN
      2. 7.1.2 Transmission with MCAN
    2. 7.2 MCAN Vs DCAN Transmit Procedural Differences
    3. 7.3 MCAN Transmit Concepts
      1. 7.3.1 Tx Event FIFO
  11. Receiving Data
    1. 8.1 Introduction to Reception
    2. 8.2 Basic Reception Process
      1. 8.2.1 DCAN Reception
      2. 8.2.2 MCAN Reception
    3. 8.3 Filter Elements
      1. 8.3.1 Filter Element Structure
    4. 8.4 Rx Buffer
      1. 8.4.1 Receiving in Rx Buffer
    5. 8.5 Rx FIFO
      1. 8.5.1 Receiving in Rx FIFO
    6. 8.6 Receiving High Priority Messages
  12. Avoiding network errors
  13. 10References

DCAN Reception

  1. Configure Receive Message Object: This involves writing the Message IDs (ARBID) and if needed, masking for frames that are to be received.
  2. For each received frame, the module checks against the Receive Message Objects in ascending order. On the first match, the frame is stored in the corresponding Message Object.
  3. Either by polling or using interrupts, ascertain the reception of new data. For polling, there is a bit corresponding to each receive message object in the register CAN_NDAT_21. For using Interrupts, the procedure has been outlined in the corresponding section.
  4. Use one of the IFx Registers to read the data from the received frame.
GUID-20231010-SS0I-3CRT-VHMJ-PVXQTZ8WS67R-low.png Figure 8-1 Reception with DCAN