SPRADC9 july   2023 AM62A3 , AM62A7

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Defect Detection Demo Summary
    2. 1.2 AM62A Processor
    3. 1.3 Defect Detection Systems
    4. 1.4 Conventional Machine Vision vs Deep Learning
  5. 2Data Set Preparation
    1. 2.1 Test Samples
    2. 2.2 Data Collection
    3. 2.3 Data Annotation
    4. 2.4 Data Augmentation
  6. 3Model Selection and Training
    1. 3.1 Model Selection
    2. 3.2 Model Training and Compilation
  7. 4Application Development
    1. 4.1 System Flow
    2. 4.2 Object Tracker
    3. 4.3 Dashboard and Bounding Boxes Drawing
    4. 4.4 Physical Demo Setup
  8. 5Performance Analysis
    1. 5.1 System Accuracy
    2. 5.2 Frame Rate
    3. 5.3 Cores Utilization
    4. 5.4 Power Consumption
  9. 6Summary
  10. 7References

Object Tracker

The object tracker is used to provide accurate coordinates of the units detected in the frame. This information is used to count the total number of units and the number of units for each class. More important, the coordinates produced by the object tracker can be fed to a sorting and filtering mechanism in the production line. Details on the object tracker can be found in the source code in the github repository in objects_tracker.py.