SPRUHW1A June   2014  – October 2021 TMS320F28052-Q1 , TMS320F28052M , TMS320F28052M-Q1 , TMS320F28054-Q1 , TMS320F28054M , TMS320F28054M-Q1

 

  1. 1Read This First
    1. 1.1 About This Manual
    2. 1.1 Glossary
    3. 1.1 Support Resources
    4.     Trademarks
  2. 1 F2805xM InstaSPIN-MOTION Enabled MCUs
  3. 2InstaSPIN-MOTION Key Capabilities and Benefits
    1. 2.1 Overview
    2. 2.2 FAST Unified Observer
    3. 2.3 SpinTAC Motion Control Suite
      1.      IDENTIFY
      2.      CONTROL
      3.      MOVE
      4.      PLAN
    4. 2.4 Additional InstaSPIN-MOTION Features
  4. 3InstaSPIN-MOTION Block Diagrams
    1.     Scenario 1: InstaSPIN-MOTION Speed Control with FAST Software Encoder
    2.     Scenario 2: InstaSPIN-MOTION Speed Control with a Mechanical Sensor
    3.     Scenario 3: InstaSPIN-MOTION Position Control with Mechanical Sensor and Redundant FAST Software Sensor
  5. 4Application Examples
    1. 4.1 Treadmill Conveyor: Smooth Motion Across Varying Speeds and Loads
    2. 4.2 Video Camera: Smooth Motion and Position Accuracy at Low Speeds
    3. 4.3 Washing Machine: Smooth Motion and Position Accuracy at Low Speeds
      1.      Agitation Cycle
      2.      Spin Cycles
    4. 4.4 InstaSPIN-MOTION Works Over the Entire Operating Range
  6. 5Evaluating InstaSPIN-MOTION Performance
    1. 5.1 Overview
    2. 5.2 Velocity Control Performance: SpinTAC vs PI
      1. 5.2.1 Disturbance Rejection
      2. 5.2.2 Reference Tracking
      3. 5.2.3 Step Response
    3. 5.3 Position Control Performance: SpinTAC vs PI
      1. 5.3.1 Disturbance Rejection
      2. 5.3.2 Reference Tracking
      3. 5.3.3 Step Response
      4. 5.3.4 Inertia Estimation Repeatability
  7. 6Microcontroller Resources
    1. 6.1 CPU Utilization
    2. 6.2 Memory Utilization
    3. 6.3 Security Zones
    4. 6.4 Linker Command File Settings
    5. 6.5 Interfacing FAST ROM Libraries
    6. 6.6 Pin Utilization
    7. 6.7 Consideration of Analog Front-End (AFE) Module
      1. 6.7.1 Routing Current Signals
      2. 6.7.2 Voltage Reference Connection
      3. 6.7.3 Routing Voltage Signals
        1.       A Resources
          1.        B Definition of Terms and Acronyms
            1.         C Revision History

Video Camera: Smooth Motion and Position Accuracy at Low Speeds

High-end security and conference room cameras operate at very low speeds (for example, 0.1 rpm) and require accurate and smooth position control to pan, tilt, and zoom. The motors that drive these cameras are difficult to tune for low speed, and they usually require a minimum of four tuning sets. In addition, there can be choppy movement at startup, which results in a shaky or unfocused picture.

InstaSPIN-MOTION was applied to a high-precision security camera driven by a 2-pole BLDC motor with a magnetic encoder. InstaSPIN-MOTION was able to control both velocity and position using a single tuning parameter that was effective across the entire operating range. SpinTAC Move was used to control the motor jerk, resulting in smooth startup.