SPRUHZ7K August   2015  – April 2024 AM5706 , AM5708 , AM5716 , AM5718 , AM5718-HIREL

 

  1.   1
  2.   Preface
    1.     Support Resources
    2.     About This Manual
    3.     Information About Cautions and Warnings
    4.     Register, Field, and Bit Calls
    5.     Coding Rules
    6.     Flow Chart Rules
    7.     Export Control Notice
    8.     AM571x, AM570x MIPI® Disclaimer
    9.     Trademarks
  3. Introduction
    1. 1.1 AM571x, AM570x Overview
    2. 1.2 AM571x, AM570x Environment
    3. 1.3 AM571x, AM570x Description
      1. 1.3.1  MPU Subsystem
      2. 1.3.2  DSP Subsystem
      3. 1.3.3  PRU-ICSS
      4. 1.3.4  IPU Subsystems
      5. 1.3.5  IVA-HD Subsystem
      6. 1.3.6  Display Subsystem
      7. 1.3.7  Video Processing Subsystem
      8. 1.3.8  Video Capture
      9. 1.3.9  3D GPU Subsystem
      10. 1.3.10 BB2D Subsystem
      11. 1.3.11 Camera Interface Subsystem
      12. 1.3.12 On-Chip Debug Support
      13. 1.3.13 Power, Reset, and Clock Management
      14. 1.3.14 On-Chip Memory
      15. 1.3.15 Memory Management
      16. 1.3.16 External Memory Interfaces
      17. 1.3.17 System and Connectivity Peripherals
        1. 1.3.17.1 System Peripherals
        2. 1.3.17.2 Media Connectivity Peripherals
        3. 1.3.17.3 Connectivity Peripherals
        4. 1.3.17.4 Audio Connectivity Peripherals
        5. 1.3.17.5 Serial Control Peripherals
    4. 1.4 AM571x, AM570x Family
    5. 1.5 AM571x, AM570x Device Identification
    6. 1.6 AM571x, AM570x Package Characteristics Overview
  4. Memory Mapping
    1. 2.1 Introduction
    2. 2.2 L3_MAIN Memory Map
      1. 2.2.1 L3_INSTR Memory Map
    3. 2.3 L4 Memory Map
      1. 2.3.1 L4_CFG Memory Map
      2. 2.3.2 L4_WKUP Memory Map
      3. 2.3.3 L4_PER Memory Map
        1. 2.3.3.1 L4_PER1 Memory Map
        2. 2.3.3.2 L4_PER2 Memory Map
        3. 2.3.3.3 L4_PER3 Memory Map
    4. 2.4 MPU Memory Map
    5. 2.5 IPU Memory Map
    6. 2.6 DSP Memory Map
    7. 2.7 PRU-ICSS Memory Map
    8. 2.8 TILER View Memory Map
  5. Power, Reset, and Clock Management
    1. 3.1  Device Power Management Introduction
      1. 3.1.1 Device Power-Management Architecture Building Blocks
        1. 3.1.1.1 Clock Management
          1. 3.1.1.1.1 Module Interface and Functional Clocks
          2. 3.1.1.1.2 62
          3. 3.1.1.1.3 Module-Level Clock Management
          4. 3.1.1.1.4 Clock Domain
          5. 3.1.1.1.5 Clock Domain-Level Clock Management
          6. 3.1.1.1.6 Clock Domain HW_AUTO Mode Sequences
          7. 3.1.1.1.7 Clock Domain Sleep/Wake-up
          8. 3.1.1.1.8 Clock Domain Dependency
            1. 3.1.1.1.8.1 Static Dependency
            2. 3.1.1.1.8.2 Dynamic Dependency
            3. 3.1.1.1.8.3 Wake-Up Dependency
        2. 3.1.1.2 Power Management
          1. 3.1.1.2.1 Power Domain
          2. 3.1.1.2.2 Module Logic and Memory Context
          3. 3.1.1.2.3 Power Domain Management
        3. 3.1.1.3 Voltage Management
          1. 3.1.1.3.1 Voltage Domain
          2. 3.1.1.3.2 Voltage Domain Management
          3. 3.1.1.3.3 AVS Overview
            1. 3.1.1.3.3.1 AVS Class 0 (SmartReflex™) Voltage Control
      2. 3.1.2 Power-Management Techniques
        1. 3.1.2.1 Standby Leakage Management
        2. 3.1.2.2 Dynamic Voltage and Frequency Scaling
        3. 3.1.2.3 Dynamic Power Switching
        4. 3.1.2.4 Adaptive Voltage Scaling
        5. 3.1.2.5 Adaptive Body Bias
        6. 3.1.2.6 87
        7. 3.1.2.7 SR3-APG (Automatic Power Gating)
        8. 3.1.2.8 Combining Power-Management Techniques
          1. 3.1.2.8.1 DPS Versus SLM
    2. 3.2  PRCM Subsystem Overview
      1. 3.2.1 Introduction
      2. 3.2.2 Power-Management Framework Features
    3. 3.3  PRCM Subsystem Environment
      1. 3.3.1 External Clock Signals
      2. 3.3.2 External Boot Signals
      3. 3.3.3 External Reset Signals
      4. 3.3.4 External Voltage Inputs
    4. 3.4  PRCM Subsystem Integration
      1. 3.4.1 Device Power-Management Layout
      2. 3.4.2 Power-Management Scheme, Reset, and Interrupt Requests
        1. 3.4.2.1 Power Domain
        2. 3.4.2.2 Resets
        3. 3.4.2.3 PRCM Interrupt Requests
        4. 3.4.2.4 105
    5. 3.5  Reset Management Functional Description
      1. 3.5.1 Overview
        1. 3.5.1.1 PRCM Reset Management Functional Description
          1. 3.5.1.1.1 Power-On Reset
          2. 3.5.1.1.2 Warm Reset
        2. 3.5.1.2 PRM Reset Management Functional Description
      2. 3.5.2 General Characteristics of Reset Signals
        1. 3.5.2.1 Scope
        2. 3.5.2.2 Occurrence
        3. 3.5.2.3 Source Type
        4. 3.5.2.4 Retention Type
      3. 3.5.3 Reset Sources
        1. 3.5.3.1 Global Reset Sources
        2. 3.5.3.2 Local Reset Sources
      4. 3.5.4 Reset Logging
      5. 3.5.5 Reset Domains
      6. 3.5.6 Reset Sequences
        1. 3.5.6.1  MPU Subsystem Power-On Reset Sequence
        2. 3.5.6.2  MPU Subsystem Warm Reset Sequence
        3. 3.5.6.3  MPU Subsystem Reset Sequence on Sleep and Wake-Up Transitions From RETENTION State
        4. 3.5.6.4  IVA Subsystem Power-On Reset Sequence
        5. 3.5.6.5  IVA Subsystem Software Warm Reset Sequence
        6. 3.5.6.6  DSP1 Subsystem Power-On Reset Sequence
        7. 3.5.6.7  DSP1 Subsystem Software Warm Reset Sequence
        8. 3.5.6.8  IPU1 Subsystem Power-On Reset Sequence
        9. 3.5.6.9  IPU1 Subsystem Software Warm Reset Sequence
        10. 3.5.6.10 IPU2 Subsystem Power-On Reset Sequence
        11. 3.5.6.11 IPU2 Subsystem Software Warm Reset Sequence
        12. 3.5.6.12 Global Warm Reset Sequence
    6. 3.6  Clock Management Functional Description
      1. 3.6.1 Overview
      2. 3.6.2 External Clock Inputs
        1. 3.6.2.1 FUNC_32K_CLK Clock
        2. 3.6.2.2 High-Frequency System Clock Input
        3. 3.6.2.3 External Reference Clock Input
      3. 3.6.3 Internal Clock Sources and Generators
        1. 3.6.3.1  PRM Clock Source
        2. 3.6.3.2  CM Clock Source
          1. 3.6.3.2.1 CM_CORE_AON Clock Generator
          2. 3.6.3.2.2 CM_CORE_AON_CLKOUTMUX Overview
          3. 3.6.3.2.3 CM_CORE_AON_TIMER Overview
          4. 3.6.3.2.4 CM_CORE_AON_MCASP Overview
        3. 3.6.3.3  Generic DPLL Overview
          1. 3.6.3.3.1 Generic APLL Overview
          2. 3.6.3.3.2 DPLLs Output Clocks Parameters
          3. 3.6.3.3.3 Enable Control, Status, and Low-Power Operation Mode
          4. 3.6.3.3.4 DPLL Power Modes
          5. 3.6.3.3.5 DPLL Recalibration
          6. 3.6.3.3.6 DPLL Output Power Down
        4. 3.6.3.4  DPLL_PER Description
          1. 3.6.3.4.1 DPLL_PER Overview
          2. 3.6.3.4.2 DPLL_PER Synthesized Clock Parameters
          3. 3.6.3.4.3 DPLL_PER Power Modes
          4. 3.6.3.4.4 DPLL_PER Recalibration
        5. 3.6.3.5  DPLL_CORE Description
          1. 3.6.3.5.1 DPLL_CORE Overview
          2. 3.6.3.5.2 DPLL_CORE Synthesized Clock Parameters
          3. 3.6.3.5.3 DPLL_CORE Power Modes
          4. 3.6.3.5.4 DPLL_CORE Recalibration
        6. 3.6.3.6  DPLL_ABE Description
          1. 3.6.3.6.1 DPLL_ABE Overview
          2. 3.6.3.6.2 DPLL_ABE Synthesized Clock Parameters
          3. 3.6.3.6.3 DPLL_ABE Power Modes
          4. 3.6.3.6.4 DPLL_ABE Recalibration
        7. 3.6.3.7  DPLL_MPU Description
          1. 3.6.3.7.1 DPLL_MPU Overview
          2. 3.6.3.7.2 DPLL_MPU Tactical Clocking Adjustment
          3. 3.6.3.7.3 DPLL_MPU Synthesized Clock Parameters
          4. 3.6.3.7.4 DPLL_MPU Power Modes
          5. 3.6.3.7.5 DPLL_MPU Recalibration
        8. 3.6.3.8  DPLL_IVA Description
          1. 3.6.3.8.1 DPLL_IVA Overview
          2. 3.6.3.8.2 DPLL_IVA Synthesized Clock Parameters
          3. 3.6.3.8.3 DPLL_IVA Power Modes
          4. 3.6.3.8.4 DPLL_IVA Recalibration
        9. 3.6.3.9  DPLL_USB Description
          1. 3.6.3.9.1 DPLL_USB Overview
          2. 3.6.3.9.2 DPLL_USB Synthesized Clock Parameters
          3. 3.6.3.9.3 DPLL_USB Power Modes
          4. 3.6.3.9.4 DPLL_USB Recalibration
        10. 3.6.3.10 DPLL_DSP Description
          1. 3.6.3.10.1 DPLL_DSP Overview
          2. 3.6.3.10.2 DPLL_DSP Synthesized Clock Parameters
          3. 3.6.3.10.3 DPLL_DSP Power Modes
          4. 3.6.3.10.4 DPLL_DSP Recalibration
        11. 3.6.3.11 DPLL_GMAC Description
          1. 3.6.3.11.1 DPLL_GMAC Overview
          2. 3.6.3.11.2 DPLL_GMAC Synthesized Clock Parameters
          3. 3.6.3.11.3 DPLL_GMAC Power Modes
          4. 3.6.3.11.4 DPLL_GMAC Recalibration
        12. 3.6.3.12 DPLL_GPU Description
          1. 3.6.3.12.1 DPLL_GPU Overview
          2. 3.6.3.12.2 DPLL_GPU Synthesized Clock Parameters
          3. 3.6.3.12.3 DPLL_GPU Power Modes
          4. 3.6.3.12.4 DPLL_GPU Recalibration
        13. 3.6.3.13 DPLL_DDR Description
          1. 3.6.3.13.1 DPLL_DDR Overview
          2. 3.6.3.13.2 DPLL_DDR Synthesized Clock Parameters
          3. 3.6.3.13.3 DPLL_DDR Power Modes
          4. 3.6.3.13.4 DPLL_DDR Recalibration
        14. 3.6.3.14 DPLL_PCIE_REF Description
          1. 3.6.3.14.1 DPLL_PCIE_REF Overview
          2. 3.6.3.14.2 DPLL_PCIE_REF Synthesized Clock Parameters
          3. 3.6.3.14.3 DPLL_PCIE_REF Power Modes
        15. 3.6.3.15 APLL_PCIE Description
          1. 3.6.3.15.1 APLL_PCIE Overview
          2. 3.6.3.15.2 APLL_PCIE Synthesized Clock Parameters
          3. 3.6.3.15.3 APLL_PCIE Power Modes
      4. 3.6.4 Clock Domains
        1. 3.6.4.1  CD_WKUPAON Clock Domain
          1. 3.6.4.1.1 CD_WKUPAON Overview
          2. 3.6.4.1.2 CD_WKUPAON Clock Domain Modes
          3. 3.6.4.1.3 CD_WKUPAON Clock Domain Dependency
            1. 3.6.4.1.3.1 CD_WKUPAON Wake-Up Dependency
          4. 3.6.4.1.4 CD_WKUPAON Clock Domain Module Attributes
        2. 3.6.4.2  CD_DSP1 Clock Domain
          1. 3.6.4.2.1 CD_DSP1 Overview
          2. 3.6.4.2.2 CD_DSP1 Clock Domain Modes
          3. 3.6.4.2.3 CD_DSP1 Clock Domain Dependency
            1. 3.6.4.2.3.1 CD_DSP1 Static Dependency
            2. 3.6.4.2.3.2 CD_DSP1 Dynamic Dependency
          4. 3.6.4.2.4 CD_DSP1 Clock Domain Module Attributes
        3. 3.6.4.3  CD_CUSTEFUSE Clock Domain
          1. 3.6.4.3.1 CD_CUSTEFUSE Overview
          2. 3.6.4.3.2 CD_CUSTEFUSE Clock Domain Modes
          3. 3.6.4.3.3 CD_CUSTEFUSE Clock Domain Dependency
          4. 3.6.4.3.4 CD_CUSTEFUSE Clock Domain Module Attributes
        4. 3.6.4.4  CD_MPU Clock Domain
          1. 3.6.4.4.1 CD_MPU Overview
          2. 3.6.4.4.2 CD_MPU Clock Domain Modes
          3. 3.6.4.4.3 CD_MPU Clock Domain Dependency
            1. 3.6.4.4.3.1 CD_MPU Static Dependency
            2. 3.6.4.4.3.2 CD_MPU Dynamic Dependency
          4. 3.6.4.4.4 CD_MPU Clock Domain Module Attributes
        5. 3.6.4.5  CD_L4PER1 Clock Domain
          1. 3.6.4.5.1 CD_L4PER1 Overview
          2. 3.6.4.5.2 CD_L4PER1 Clock Domain Modes
          3. 3.6.4.5.3 CD_L4PER1 Clock Domain Dependency
            1. 3.6.4.5.3.1 CD_L4PER1 Dynamic Dependency
            2. 3.6.4.5.3.2 CD_L4PER1 Wake-Up Dependency
          4. 3.6.4.5.4 CD_L4PER1 Clock Domain Module Attributes
        6. 3.6.4.6  CD_L4PER2 Clock Domain
          1. 3.6.4.6.1 CD_L4PER2 Overview
          2. 3.6.4.6.2 CD_L4PER2 Clock Domain Modes
          3. 3.6.4.6.3 CD_L4PER2 Clock Domain Dependency
            1. 3.6.4.6.3.1 CD_L4PER2 Dynamic Dependency
            2. 3.6.4.6.3.2 CD_L4PER2 Wake-Up Dependency
          4. 3.6.4.6.4 CD_L4PER2 Clock Domain Module Attributes
        7. 3.6.4.7  CD_L4PER3 Clock Domain
          1. 3.6.4.7.1 CD_L4PER3 Overview
          2. 3.6.4.7.2 CD_L4PER3 Clock Domain Modes
          3. 3.6.4.7.3 CD_L4PER3 Clock Domain Dependency
            1. 3.6.4.7.3.1 CD_L4PER3 Dynamic Dependency
            2. 3.6.4.7.3.2 CD_L4PER3 Wake-Up Dependency
          4. 3.6.4.7.4 CD_L4PER3 Clock Domain Module Attributes
        8. 3.6.4.8  CD_L4SEC Clock Domain
          1. 3.6.4.8.1 CD_L4SEC Overview
          2. 3.6.4.8.2 CD_L4SEC Clock Domain Modes
          3. 3.6.4.8.3 CD_L4SEC Clock Domain Dependency
            1. 3.6.4.8.3.1 CD_L4SEC Static Dependency
            2. 3.6.4.8.3.2 CD_L4SEC Dynamic Dependency
          4. 3.6.4.8.4 CD_L4SEC Clock Domain Module Attributes
          5. 3.6.4.8.5 268
        9. 3.6.4.9  CD_L3INIT Clock Domain
          1. 3.6.4.9.1 CD_L3INIT Overview
          2. 3.6.4.9.2 CD_L3INIT Clock Domain Modes
          3. 3.6.4.9.3 CD_L3INIT Clock Domain Dependency
            1. 3.6.4.9.3.1 CD_L3INIT Static Dependency
            2. 3.6.4.9.3.2 CD_L3INIT Dynamic Dependency
            3. 3.6.4.9.3.3 CD_L3INIT Wake-Up Dependency
          4. 3.6.4.9.4 CD_L3INIT Clock Domain Module Attributes
        10. 3.6.4.10 CD_IVA Clock Domain
          1. 3.6.4.10.1 CD_IVA Overview
          2. 3.6.4.10.2 CD_IVA Clock Domain Modes
          3. 3.6.4.10.3 CD_IVA Clock Domain Dependency
            1. 3.6.4.10.3.1 CD_IVA Static Dependency
            2. 3.6.4.10.3.2 CD_IVA Dynamic Dependency
          4. 3.6.4.10.4 CD_IVA Clock Domain Module Attributes
        11. 3.6.4.11 CD_GPU Description
          1. 3.6.4.11.1 CD_GPU Overview
          2. 3.6.4.11.2 CD_GPU Clock Domain Modes
          3. 3.6.4.11.3 CD_GPU Clock Domain Dependency
            1. 3.6.4.11.3.1 CD_GPU Static Dependency
            2. 3.6.4.11.3.2 CD_GPU Dynamic Dependency
          4. 3.6.4.11.4 CD_GPU Clock Domain Module Attributes
        12. 3.6.4.12 CD_EMU Clock Domain
          1. 3.6.4.12.1 CD_EMU Overview
          2. 3.6.4.12.2 CD_EMU Clock Domain Modes
          3. 3.6.4.12.3 CD_EMU Clock Domain Dependency
            1. 3.6.4.12.3.1 CD_EMU Dynamic Dependency
          4. 3.6.4.12.4 CD_EMU Clock Domain Module Attributes
        13. 3.6.4.13 CD_DSS Clock Domain
          1. 3.6.4.13.1 CD_DSS Overview
          2. 3.6.4.13.2 CD_DSS Clock Domain Modes
          3. 3.6.4.13.3 CD_DSS Clock Domain Dependency
            1. 3.6.4.13.3.1 CD_DSS Static Dependency
            2. 3.6.4.13.3.2 CD_DSS Dynamic Dependency
            3. 3.6.4.13.3.3 CD_DSS Wake-Up Dependency
          4. 3.6.4.13.4 CD_DSS Clock Domain Module Attributes
        14. 3.6.4.14 CD_L4_CFG Clock Domain
          1. 3.6.4.14.1 CD_L4_CFG Overview
          2. 3.6.4.14.2 CD_L4_CFG Clock Domain Modes
          3. 3.6.4.14.3 CD_L4_CFG Clock Domain Dependency
            1. 3.6.4.14.3.1 CD_L4_CFG Dynamic Dependency
          4. 3.6.4.14.4 CD_L4_CFG Clock Domain Module Attributes
        15. 3.6.4.15 CD_L3_INSTR Clock Domain
          1. 3.6.4.15.1 CD_L3_INSTR Overview
          2. 3.6.4.15.2 CD_L3_INSTR Clock Domain Modes
          3. 3.6.4.15.3 CD_L3_INSTR Clock Domain Dependency
          4. 3.6.4.15.4 CD_L3_INSTR Clock Domain Module Attributes
        16. 3.6.4.16 CD_L3_MAIN1 Clock Domain
          1. 3.6.4.16.1 CD_L3_MAIN1 Overview
          2. 3.6.4.16.2 CD_L3_MAIN1 Clock Domain Modes
          3. 3.6.4.16.3 CD_L3_MAIN1 Clock Domain Dependency
            1. 3.6.4.16.3.1 CD_L3_MAIN1 Dynamic Dependency
          4. 3.6.4.16.4 CD_L3_MAIN1 Clock Domain Module Attributes
        17. 3.6.4.17 CD_EMIF Clock Domain
          1. 3.6.4.17.1 CD_EMIF Overview
          2. 3.6.4.17.2 CD_EMIF Clock Domain Modes
          3. 3.6.4.17.3 CD_EMIF Clock Domain Dependency
          4. 3.6.4.17.4 CD_EMIF Clock Domain Module Attributes
        18. 3.6.4.18 CD_IPU Clock Domain
          1. 3.6.4.18.1 CD_IPU Overview
          2. 3.6.4.18.2 CD_IPU Clock Domain Modes
          3. 3.6.4.18.3 CD_IPU Clock Domain Dependency
            1. 3.6.4.18.3.1 CD_IPU Static Dependency
            2. 3.6.4.18.3.2 CD_IPU Dynamic Dependency
          4. 3.6.4.18.4 CD_IPU Clock Domain Module Attributes
        19. 3.6.4.19 CD_IPU1 Clock Domain
          1. 3.6.4.19.1 CD_IPU1 Overview
          2. 3.6.4.19.2 CD_IPU1 Clock Domain Modes
          3. 3.6.4.19.3 CD_IPU1 Clock Domain Dependency
            1. 3.6.4.19.3.1 CD_IPU1 Static Dependency
            2. 3.6.4.19.3.2 CD_IPU1 Dynamic Dependency
          4. 3.6.4.19.4 CD_IPU1 Clock Domain Module Attributes
        20. 3.6.4.20 CD_IPU2 Clock Domain
          1. 3.6.4.20.1 CD_IPU2 Overview
          2. 3.6.4.20.2 CD_IPU2 Clock Domain Modes
          3. 3.6.4.20.3 CD_IPU2 Clock Domain Dependency
            1. 3.6.4.20.3.1 CD_IPU2 Static Dependency
            2. 3.6.4.20.3.2 CD_IPU2 Dynamic Dependency
          4. 3.6.4.20.4 CD_IPU2 Clock Domain Module Attributes
        21. 3.6.4.21 CD_DMA Clock Domain
          1. 3.6.4.21.1 CD_DMA Overview
          2. 3.6.4.21.2 CD_DMA Clock Domain Modes
          3. 3.6.4.21.3 CD_DMA Clock Domain Dependency
            1. 3.6.4.21.3.1 CD_DMA Static Dependency
            2. 3.6.4.21.3.2 CD_DMA Dynamic Dependency
          4. 3.6.4.21.4 CD_DMA Clock Domain Module Attributes
        22. 3.6.4.22 CD_ATL Clock Domain
          1. 3.6.4.22.1 CD_ATL Overview
          2. 3.6.4.22.2 CD_ATL Clock Domain Modes
          3. 3.6.4.22.3 CD_ATL Clock Domain Module Attributes
        23. 3.6.4.23 CD_CAM Clock Domain
          1. 3.6.4.23.1 CD_CAM Overview
          2. 3.6.4.23.2 CD_CAM Clock Domain Modes
          3. 3.6.4.23.3 CD_CAM Clock Domain Dependency
            1. 3.6.4.23.3.1 CD_CAM Static Dependency
            2. 3.6.4.23.3.2 CD_CAM Dynamic Dependency
          4. 3.6.4.23.4 CD_CAM Clock Domain Module Attributes
          5. 3.6.4.23.5 366
        24. 3.6.4.24 CD_GMAC Clock Domain
          1. 3.6.4.24.1 CD_GMAC Overview
          2. 3.6.4.24.2 CD_GMAC Clock Domain Modes
          3. 3.6.4.24.3 CD_GMAC Clock Domain Dependency
            1. 3.6.4.24.3.1 CD_GMAC Static Dependency
            2. 3.6.4.24.3.2 CD_GMAC Dynamic Dependency
          4. 3.6.4.24.4 CD_GMAC Clock Domain Module Attributes
        25. 3.6.4.25 CD_VPE Clock Domain
          1. 3.6.4.25.1 CD_VPE Overview
          2. 3.6.4.25.2 CD_VPE Clock Domain Modes
          3. 3.6.4.25.3 CD_VPE Clock Domain Dependency
            1. 3.6.4.25.3.1 CD_VPE Wake-Up Dependency
          4. 3.6.4.25.4 CD_VPE Clock Domain Module Attributes
        26. 3.6.4.26 CD_RTC Clock Domain
          1. 3.6.4.26.1 CD_RTC Overview
          2. 3.6.4.26.2 CD_RTC Clock Domain Modes
          3. 3.6.4.26.3 CD_RTC Clock Domain Dependency
            1. 3.6.4.26.3.1 CD_RTC Wake-Up Dependency
          4. 3.6.4.26.4 CD_RTC Clock Domain Module Attributes
        27. 3.6.4.27 CD_PCIE Clock Domain
          1. 3.6.4.27.1 CD_PCIE Overview
          2. 3.6.4.27.2 CD_PCIE Clock Domain Modes
          3. 3.6.4.27.3 CD_PCIE Clock Domain Dependency
            1. 3.6.4.27.3.1 CD_PCIE Wake-Up Dependency
          4. 3.6.4.27.4 CD_PCIE Clock Domain Module Attributes
    7. 3.7  Power Management Functional Description
      1. 3.7.1  PD_WKUPAON Description
        1. 3.7.1.1 PD_WKUPAON Power Domain Modes
          1. 3.7.1.1.1 PD_WKUPAON Logic and Memory Area Power Modes
      2. 3.7.2  PD_DSP1 Description
        1. 3.7.2.1 PD_DSP1 Power Domain Modes
          1. 3.7.2.1.1 PD_DSP1 Logic and Memory Area Power Modes
          2. 3.7.2.1.2 PD_DSP1 Logic and Memory Area Power Modes Control and Status
      3. 3.7.3  PD_CUSTEFUSE Description
        1. 3.7.3.1 PD_CUSTEFUSE Power Domain Modes
          1. 3.7.3.1.1 PD_CUSTEFUSE Logic and Memory Area Power Modes
          2. 3.7.3.1.2 PD_CUSTEFUSE Logic and Memory Area Power Modes Control and Status
      4. 3.7.4  PD_MPU Description
        1. 3.7.4.1 PD_MPU Power Domain Modes
          1. 3.7.4.1.1 PD_MPU Logic and Memory Area Power Modes
          2. 3.7.4.1.2 PD_MPU Logic and Memory Area Power Modes Control and Status
          3. 3.7.4.1.3 PD_MPU Power State Override
      5. 3.7.5  PD_IPU Description
        1. 3.7.5.1 PD_IPU Power Domain Modes
          1. 3.7.5.1.1 PD_IPU Logic and Memory Area Power Modes
          2. 3.7.5.1.2 PD_IPU Logic and Memory Area Power Modes Control and Status
      6. 3.7.6  PD_L3INIT Description
        1. 3.7.6.1 PD_L3INIT Power Domain Modes
          1. 3.7.6.1.1 PD_L3INIT Logic and Memory Area Power Modes
          2. 3.7.6.1.2 PD_L3INIT Logic and Memory Area Power Modes Control and Status
      7. 3.7.7  PD_L4PER Description
      8. 3.7.8  PD_IVA Description
        1. 3.7.8.1 PD_IVA Power Domain Modes
          1. 3.7.8.1.1 PD_IVA Logic and Memory Area Power Modes
          2. 3.7.8.1.2 PD_IVA Logic and Memory Area Power Modes Control and Status
      9. 3.7.9  PD_GPU Description
        1. 3.7.9.1 PD_GPU Power Domain Modes
          1. 3.7.9.1.1 PD_GPU Logic and Memory Area Power Modes
          2. 3.7.9.1.2 PD_GPU Logic and Memory Area Power Modes Control and Status
      10. 3.7.10 PD_EMU Description
      11. 3.7.11 PD_DSS Description
        1. 3.7.11.1 PD_DSS Power Domain Modes
          1. 3.7.11.1.1 PD_DSS Logic and Memory Area Power Modes
          2. 3.7.11.1.2 PD_DSS Logic and Memory Area Power Mode Control and Status
      12. 3.7.12 PD_CORE Description
        1. 3.7.12.1 PD_CORE Power Domain Modes
          1. 3.7.12.1.1 PD_CORE Logic and Memory Area Power Modes
          2. 3.7.12.1.2 PD_CORE Logic and Memory Area Power Mode Control and Status
      13. 3.7.13 PD_CAM Description
        1. 3.7.13.1 PD_CAM Power Domain Modes
          1. 3.7.13.1.1 PD_CAM Logic and Memory Area Power Modes
          2. 3.7.13.1.2 PD_CAM Logic and Memory Area Power Mode Control and Status
      14. 3.7.14 PD_MPUAON Description
        1. 3.7.14.1 PD_MPUAON Power Domain Modes
      15. 3.7.15 PD_MMAON Description
        1. 3.7.15.1 PD_MMAON Power Domain Modes
      16. 3.7.16 PD_COREAON Description
        1. 3.7.16.1 PD_COREAON Power Domain Modes
      17. 3.7.17 PD_VPE Description
        1. 3.7.17.1 PD_VPE Power Domain Modes
          1. 3.7.17.1.1 PD_VPE Logic and Memory Area Power Modes
          2. 3.7.17.1.2 PD_VPE Logic and Memory Area Power Modes Control and Status
      18. 3.7.18 PD_RTC Description
        1. 3.7.18.1 PD_RTC Power Domain Modes
          1. 3.7.18.1.1 PD_RTC Logic and Memory Area Power Modes
    8. 3.8  Voltage-Management Functional Description
      1. 3.8.1 Overview
      2. 3.8.2 Voltage-Control Architecture
      3. 3.8.3 Internal LDOs Control
        1. 3.8.3.1 VDD_MPU_L, VDD_CORE_L, and VDD_IVAHD_L, VDD_GPU_L, VDD_DSPEVE_L Control
          1. 3.8.3.1.1 Adaptive Voltage Scaling
            1. 3.8.3.1.1.1 SmartReflex in the Device
        2. 3.8.3.2 Memory LDOs
        3. 3.8.3.3 ABB LDOs Control
        4. 3.8.3.4 ABB LDO Programming Sequence
          1. 3.8.3.4.1 ABB LDO Enable Sequence
          2. 3.8.3.4.2 ABB LDO Disable Sequence (Entering in Bypass Mode)
        5. 3.8.3.5 BANDGAPs Control
      4. 3.8.4 DVFS
    9. 3.9  Device Low-Power States
      1. 3.9.1 Device Wake-Up Source Summary
      2. 3.9.2 Wakeup Upon Global Warm Reset
      3. 3.9.3 Global Warm Reset During a Device Wake-Up Sequence
      4. 3.9.4 I/O Management
        1. 3.9.4.1 Isolation / Wakeup Sequence
          1. 3.9.4.1.1 Software-Controlled I/O Isolation
    10. 3.10 PRCM Module Programming Guide
      1. 3.10.1 DPLLs Low-Level Programming Models
        1. 3.10.1.1 Global Initialization
          1. 3.10.1.1.1 Surrounding Module Global Initialization
          2. 3.10.1.1.2 DPLL Global Initialization
            1. 3.10.1.1.2.1 Main Sequence – DPLL Global Initialization
            2. 3.10.1.1.2.2 Subsequence – Recalibration Parameter Configuration
            3. 3.10.1.1.2.3 Subsequence – Synthesized Clock Parameter Configuration
            4. 3.10.1.1.2.4 Subsequence – Output Clock Parameter Configuration
        2. 3.10.1.2 DPLL Output Frequency Change
      2. 3.10.2 Clock Management Low-Level Programming Models
        1. 3.10.2.1 Global Initialization
          1. 3.10.2.1.1 Surrounding Module Global Initialization
          2. 3.10.2.1.2 Clock Management Global Initialization
            1. 3.10.2.1.2.1 Main Sequence – Clock Domain Global Initialization
        2. 3.10.2.2 Clock Domain Sleep Transition and Troubleshooting
        3. 3.10.2.3 Enable/Disable Software-Programmable Static Dependency
      3. 3.10.3 Power Management Low-Level Programming Models
        1. 3.10.3.1 Global Initialization
          1. 3.10.3.1.1 Surrounding Module Global Initialization
          2. 3.10.3.1.2 Power Management Global Initialization
            1. 3.10.3.1.2.1 Main Sequence – Power Domain Global Initialization and Setting
        2. 3.10.3.2 Forced Memory Area State Change With Power Domain ON
        3. 3.10.3.3 Forced Power Domain Low-Power State Transition
    11. 3.11 497
    12. 3.12 PRCM Software Configuration for OPP_PLUS
    13. 3.13 PRCM Register Manual
      1. 3.13.1  Not Supported Functionality (Registers and Bits)
      2. 3.13.2  PRCM Instance Summary
      3. 3.13.3  CM_CORE_AON__CKGEN Registers
        1. 3.13.3.1 CM_CORE_AON__CKGEN Register Summary
        2. 3.13.3.2 CM_CORE_AON__CKGEN Register Description
      4. 3.13.4  CM_CORE_AON__DSP1 Registers
        1. 3.13.4.1 CM_CORE_AON__DSP1 Register Summary
        2. 3.13.4.2 CM_CORE_AON__DSP1 Register Description
      5. 3.13.5  CM_CORE_AON__DSP2 Registers
        1. 3.13.5.1 CM_CORE_AON__DSP2 Register Summary
        2. 3.13.5.2 CM_CORE_AON__DSP2 Register Description
      6. 3.13.6  CM_CORE_AON__EVE1 Registers
        1. 3.13.6.1 CM_CORE_AON__EVE1 Register Summary
        2. 3.13.6.2 CM_CORE_AON__EVE1 Register Description
      7. 3.13.7  CM_CORE_AON__EVE2 Registers
        1. 3.13.7.1 CM_CORE_AON__EVE2 Register Summary
        2. 3.13.7.2 CM_CORE_AON__EVE2 Register Description
      8. 3.13.8  CM_CORE_AON__EVE3 Registers
        1. 3.13.8.1 CM_CORE_AON__EVE3 Register Summary
        2. 3.13.8.2 CM_CORE_AON__EVE3 Register Description
      9. 3.13.9  CM_CORE_AON__EVE4 Registers
        1. 3.13.9.1 CM_CORE_AON__EVE4 Register Summary
        2. 3.13.9.2 CM_CORE_AON__EVE4 Register Description
      10. 3.13.10 CM_CORE_AON__INSTR Registers
        1. 3.13.10.1 CM_CORE_AON__INSTR Register Summary
        2. 3.13.10.2 CM_CORE_AON__INSTR Register Description
      11. 3.13.11 CM_CORE_AON__IPU Registers
        1. 3.13.11.1 CM_CORE_AON__IPU Register Summary
        2. 3.13.11.2 CM_CORE_AON__IPU Register Description
      12. 3.13.12 CM_CORE_AON__MPU Registers
        1. 3.13.12.1 CM_CORE_AON__MPU Register Summary
        2. 3.13.12.2 CM_CORE_AON__MPU Register Description
      13. 3.13.13 CM_CORE_AON__OCP_SOCKET Registers
        1. 3.13.13.1 CM_CORE_AON__OCP_SOCKET Register Summary
        2. 3.13.13.2 CM_CORE_AON__OCP_SOCKET Register Description
      14. 3.13.14 CM_CORE_AON__RESTORE Registers
        1. 3.13.14.1 CM_CORE_AON__RESTORE Register Summary
        2. 3.13.14.2 CM_CORE_AON__RESTORE Register Description
      15. 3.13.15 CM_CORE_AON__RTC Registers
        1. 3.13.15.1 CM_CORE_AON__RTC Register Summary
        2. 3.13.15.2 CM_CORE_AON__RTC Register Description
      16. 3.13.16 CM_CORE_AON__VPE Registers
        1. 3.13.16.1 CM_CORE_AON__VPE Register Summary
        2. 3.13.16.2 CM_CORE_AON__VPE Register Description
      17. 3.13.17 CM_CORE__CAM Registers
        1. 3.13.17.1 CM_CORE__CAM Register Summary
        2. 3.13.17.2 CM_CORE__CAM Register Description
      18. 3.13.18 CM_CORE__CKGEN Registers
        1. 3.13.18.1 CM_CORE__CKGEN Register Summary
        2. 3.13.18.2 CM_CORE__CKGEN Register Description
      19. 3.13.19 CM_CORE__COREAON Registers
        1. 3.13.19.1 CM_CORE__COREAON Register Summary
        2. 3.13.19.2 CM_CORE__COREAON Register Description
      20. 3.13.20 CM_CORE__CORE Registers
        1. 3.13.20.1 CM_CORE__CORE Register Summary
        2. 3.13.20.2 CM_CORE__CORE Register Description
      21. 3.13.21 CM_CORE__CUSTEFUSE Registers
        1. 3.13.21.1 CM_CORE__CUSTEFUSE Register Summary
        2. 3.13.21.2 CM_CORE__CUSTEFUSE Register Description
      22. 3.13.22 CM_CORE__DSS Registers
        1. 3.13.22.1 CM_CORE__DSS Register Summary
        2. 3.13.22.2 CM_CORE__DSS Register Description
      23. 3.13.23 CM_CORE__GPU Registers
        1. 3.13.23.1 CM_CORE__GPU Register Summary
        2. 3.13.23.2 CM_CORE__GPU Register Description
      24. 3.13.24 CM_CORE__IVA Registers
        1. 3.13.24.1 CM_CORE__IVA Register Summary
        2. 3.13.24.2 CM_CORE__IVA Register Description
      25. 3.13.25 CM_CORE__L3INIT Registers
        1. 3.13.25.1 CM_CORE__L3INIT Register Summary
        2. 3.13.25.2 CM_CORE__L3INIT Register Description
      26. 3.13.26 CM_CORE__L4PER Registers
        1. 3.13.26.1 CM_CORE__L4PER Register Summary
        2. 3.13.26.2 CM_CORE__L4PER Register Description
      27. 3.13.27 CM_CORE__OCP_SOCKET Registers
        1. 3.13.27.1 CM_CORE__OCP_SOCKET Register Summary
        2. 3.13.27.2 CM_CORE__OCP_SOCKET Register Description
      28. 3.13.28 CM_CORE__RESTORE Registers
        1. 3.13.28.1 CM_CORE__RESTORE Register Summary
        2. 3.13.28.2 CM_CORE__RESTORE Register Description
      29. 3.13.29 SMARTREFLEX Registers
        1. 3.13.29.1 SMARTREFLEX Register Summary
        2. 3.13.29.2 SMARTREFLEX Register Description
      30. 3.13.30 CAM_PRM Registers
        1. 3.13.30.1 CAM_PRM Register Summary
        2. 3.13.30.2 CAM_PRM Register Description
      31. 3.13.31 CKGEN_PRM Registers
        1. 3.13.31.1 CKGEN_PRM Register Summary
        2. 3.13.31.2 CKGEN_PRM Register Description
      32. 3.13.32 COREAON_PRM Registers
        1. 3.13.32.1 COREAON_PRM Register Summary
        2. 3.13.32.2 COREAON_PRM Register Description
      33. 3.13.33 CORE_PRM Registers
        1. 3.13.33.1 CORE_PRM Register Summary
        2. 3.13.33.2 CORE_PRM Register Description
      34. 3.13.34 CUSTEFUSE_PRM Registers
        1. 3.13.34.1 CUSTEFUSE_PRM Register Summary
        2. 3.13.34.2 CUSTEFUSE_PRM Register Description
      35. 3.13.35 DEVICE_PRM Registers
        1. 3.13.35.1 DEVICE_PRM Register Summary
        2. 3.13.35.2 DEVICE_PRM Register Description
      36. 3.13.36 DSP1_PRM registers
        1. 3.13.36.1 DSP1_PRM Register Summary
        2. 3.13.36.2 DSP1_PRM Register Description
      37. 3.13.37 DSP2_PRM Registers
        1. 3.13.37.1 DSP2_PRM Register Summary
        2. 3.13.37.2 DSP2_PRM Register Description
      38. 3.13.38 DSS_PRM Registers
        1. 3.13.38.1 DSS_PRM Register Summary
        2. 3.13.38.2 DSS_PRM Register Description
      39. 3.13.39 EMU_CM Registers
        1. 3.13.39.1 EMU_CM Register Summary
        2. 3.13.39.2 EMU_CM Register Description
      40. 3.13.40 EMU_PRM Registers
        1. 3.13.40.1 EMU_PRM Register Summary
        2. 3.13.40.2 EMU_PRM Register Description
      41. 3.13.41 EVE1_PRM Registers
        1. 3.13.41.1 EVE1_PRM Register Summary
        2. 3.13.41.2 EVE1_PRM Register Description
      42. 3.13.42 EVE2_PRM Registers
        1. 3.13.42.1 EVE2_PRM Register Summary
        2. 3.13.42.2 EVE2_PRM Register Description
      43. 3.13.43 EVE3_PRM Registers
        1. 3.13.43.1 EVE3_PRM Register Summary
        2. 3.13.43.2 EVE3_PRM Register Description
      44. 3.13.44 EVE4_PRM Registers
        1. 3.13.44.1 EVE4_PRM Register Summary
        2. 3.13.44.2 EVE4_PRM Register Description
      45. 3.13.45 GPU_PRM Registers
        1. 3.13.45.1 GPU_PRM Register Summary
        2. 3.13.45.2 GPU_PRM Register Description
      46. 3.13.46 INSTR_PRM Registers
        1. 3.13.46.1 INSTR_PRM Register Summary
        2. 3.13.46.2 INSTR_PRM Register Description
      47. 3.13.47 IPU_PRM registers
        1. 3.13.47.1 IPU_PRM Register Summary
        2. 3.13.47.2 IPU_PRM Register Description
      48. 3.13.48 IVA_PRM Registers
        1. 3.13.48.1 IVA_PRM Register Summary
        2. 3.13.48.2 IVA_PRM Register Description
      49. 3.13.49 L3INIT_PRM Registers
        1. 3.13.49.1 L3INIT_PRM Register Summary
        2. 3.13.49.2 L3INIT_PRM Register Description
      50. 3.13.50 L4PER_PRM Registers
        1. 3.13.50.1 L4PER_PRM Register Summary
        2. 3.13.50.2 L4PER_PRM Register Description
      51. 3.13.51 MPU_PRM Registers
        1. 3.13.51.1 MPU_PRM Register Summary
        2. 3.13.51.2 MPU_PRM Register Description
      52. 3.13.52 OCP_SOCKET_PRM Registers
        1. 3.13.52.1 OCP_SOCKET_PRM Register Summary
        2. 3.13.52.2 OCP_SOCKET_PRM Register Description
      53. 3.13.53 RTC_PRM Registers
        1. 3.13.53.1 RTC_PRM Register Summary
        2. 3.13.53.2 RTC_PRM Register Description
      54. 3.13.54 VPE_PRM Registers
        1. 3.13.54.1 VPE_PRM Register Summary
        2. 3.13.54.2 VPE_PRM Register Description
      55. 3.13.55 WKUPAON_CM Registers
        1. 3.13.55.1 WKUPAON_CM Register Summary
        2. 3.13.55.2 WKUPAON_CM Register Description
      56. 3.13.56 WKUPAON_PRM registers
        1. 3.13.56.1 WKUPAON_PRM Register Summary
        2. 3.13.56.2 WKUPAON_PRM Register Description
  6. Cortex-A15 MPU Subsystem
    1. 4.1 Cortex-A15 MPU Subsystem Overview
      1. 4.1.1 Introduction
      2. 4.1.2 Features
    2. 4.2 Cortex-A15 MPU Subsystem Integration
      1. 4.2.1 Clock Distribution
      2. 4.2.2 Reset Distribution
    3. 4.3 Cortex-A15 MPU Subsystem Functional Description
      1. 4.3.1 MPU Subsystem Block Diagram
      2. 4.3.2 Cortex-A15 MPCore (MPU_CLUSTER)
        1. 4.3.2.1 MPU L2 Cache Memory System
          1. 4.3.2.1.1 MPU L2 Cache Architecture
          2. 4.3.2.1.2 MPU L2 Cache Controller
          3. 4.3.2.1.3 677
      3. 4.3.3 MPU_AXI2OCP
      4. 4.3.4 Memory Adapter
        1. 4.3.4.1 MPU_MA Overview
        2. 4.3.4.2 AXI Input Interface
        3. 4.3.4.3 Interleaving
          1. 4.3.4.3.1 High-Order Fixed Interleaving Model
          2. 4.3.4.3.2 Lower 2-GiB Programmable Interleaving Model
          3. 4.3.4.3.3 Local Interconnect and Synchronization Agent (LISA) Section Manager
          4. 4.3.4.3.4 MA_LSM Registers
          5. 4.3.4.3.5 Posted and Nonposted Writes
          6. 4.3.4.3.6 Errors
        4. 4.3.4.4 Statistics Collector Probe Ports
        5. 4.3.4.5 MPU_MA Firewall
        6. 4.3.4.6 MPU_MA Power and Reset Management
        7. 4.3.4.7 MPU_MA Watchpoint
          1. 4.3.4.7.1 Watchpoint Types
          2. 4.3.4.7.2 Transaction Filtering Options
          3. 4.3.4.7.3 Transaction Match Effects
          4. 4.3.4.7.4 Trigger Generation
          5. 4.3.4.7.5 Programming Options Summary
      5. 4.3.5 Realtime Counter (Master Counter)
        1. 4.3.5.1 Counter Operation
        2. 4.3.5.2 Frequency Change Procedure
      6. 4.3.6 MPU Watchdog Timer
      7. 4.3.7 MPU Subsystem Power Management
        1. 4.3.7.1 Power Domains
        2. 4.3.7.2 Power States of MPU_C0
        3. 4.3.7.3 Power States of MPU Subsystem
        4. 4.3.7.4 MPU_WUGEN
        5. 4.3.7.5 Power Transition Sequence
        6. 4.3.7.6 SR3-APG Technology Fail-Safe Mode
      8. 4.3.8 MPU Subsystem AMBA Interface Configuration
    4. 4.4 Cortex-A15 MPU Subsystem Register Manual
      1. 4.4.1  Cortex-A15 MPU Subsystem Instance Summary
      2. 4.4.2  MPU_CS_STM Registers
      3. 4.4.3  MPU_INTC Registers
      4. 4.4.4  MPU_PRCM_OCP_SOCKET Registers
        1. 4.4.4.1 MPU_PRCM_OCP_SOCKET Register Summary
        2. 4.4.4.2 MPU_PRCM_OCP_SOCKET Register Description
      5. 4.4.5  MPU_PRCM_DEVICE Registers
        1. 4.4.5.1 MPU_PRCM_DEVICE Register Summary
        2. 4.4.5.2 MPU_PRCM_DEVICE Register Description
      6. 4.4.6  MPU_PRCM_PRM_C0 Registers
        1. 4.4.6.1 MPU_PRCM_PRM_C0 Register Summary
        2. 4.4.6.2 MPU_PRCM_PRM_C0 Register Description
      7. 4.4.7  MPU_PRCM_CM_C0 Registers
        1. 4.4.7.1 MPU_PRCM_CM_C0 Register Summary
        2. 4.4.7.2 MPU_PRCM_CM_C0 Register Description
      8. 4.4.8  MPU_WUGEN Registers
        1. 4.4.8.1 MPU_WUGEN Register Summary
        2. 4.4.8.2 MPU_WUGEN Register Description
      9. 4.4.9  MPU_WD_TIMER Registers
        1. 4.4.9.1 MPU_WD_TIMER Register Summary
        2. 4.4.9.2 MPU_WD_TIMER Register Description
      10. 4.4.10 MPU_AXI2OCP_MISC Registers
        1. 4.4.10.1 MPU_AXI2OCP_MISC Register Summary
        2. 4.4.10.2 MPU_AXI2OCP_MISC Register Description
      11. 4.4.11 MPU_MA_LSM Registers
        1. 4.4.11.1 MPU_MA_LSM Register Summary
        2. 4.4.11.2 MPU_MA_LSM Register Description
      12. 4.4.12 MPU_MA_WP Registers
        1. 4.4.12.1 MPU_MA_WP Register Summary
        2. 4.4.12.2 MPU_MA_WP Register Description
  7. DSP Subsystem
    1. 5.1 DSP Subsystem Overview
      1. 5.1.1 DSP Subsystem Key Features
    2. 5.2 DSP Subsystem Integration
    3. 5.3 DSP Subsystem Functional Description
      1. 5.3.1  DSP Subsystem Block Diagram
      2. 5.3.2  DSP Subsystem Components
        1. 5.3.2.1 C66x DSP Subsystem Introduction
        2. 5.3.2.2 DSP TMS320C66x CorePac
          1. 5.3.2.2.1 DSP TMS320C66x CorePac CPU
          2. 5.3.2.2.2 DSP TMS320C66x CorePac Internal Memory Controllers and Memories
            1. 5.3.2.2.2.1 Level 1 Memories
            2. 5.3.2.2.2.2 Level 2 Memory
          3. 5.3.2.2.3 DSP C66x CorePac Internal Peripherals
            1. 5.3.2.2.3.1 DSP C66x CorePac Interrupt Controller (DSP INTC)
            2. 5.3.2.2.3.2 DSP C66x CorePac Power-Down Controller (DSP PDC)
            3. 5.3.2.2.3.3 DSP C66x CorePac Bandwidth Manager (BWM)
            4. 5.3.2.2.3.4 DSP C66x CorePac Memory Protection Hardware
            5. 5.3.2.2.3.5 DSP C66x CorePac Internal DMA (IDMA) Controller
            6. 5.3.2.2.3.6 DSP C66x CorePac External Memory Controller
            7. 5.3.2.2.3.7 DSP C66x CorePac Extended Memory Controller
              1. 5.3.2.2.3.7.1 XMC MDMA Accesses at DSP System Level
                1. 5.3.2.2.3.7.1.1 DSP System MPAX Logic
                2. 5.3.2.2.3.7.1.2 MDMA Non-Post Override Control
            8. 5.3.2.2.3.8 L1P Memory Error Detection Logic
            9. 5.3.2.2.3.9 L2 Memory Error Detection and Correction Logic
        3. 5.3.2.3 DSP Debug and Trace Support
          1. 5.3.2.3.1 DSP Advanced Event Triggering (AET)
          2. 5.3.2.3.2 DSP Trace Support
          3. 5.3.2.3.3 770
      3. 5.3.3  DSP System Control Logic
        1. 5.3.3.1 DSP System Clocks
        2. 5.3.3.2 DSP Hardware Resets
        3. 5.3.3.3 DSP Software Resets
        4. 5.3.3.4 DSP Power Management
          1. 5.3.3.4.1 DSP System Powerdown Protocols
          2. 5.3.3.4.2 DSP Software and Hardware Power Down Sequence Overview
          3. 5.3.3.4.3 DSP IDLE Wakeup
          4. 5.3.3.4.4 DSP SYSTEM IRQWAKEEN registers
          5. 5.3.3.4.5 DSP Automatic Power Transition
      4. 5.3.4  DSP Interrupt Requests
        1. 5.3.4.1 DSP Input Interrupts
          1. 5.3.4.1.1 DSP Non-maskable Interrupt Input
        2. 5.3.4.2 DSP Event and Interrupt Generation Outputs
          1. 5.3.4.2.1 DSP MDMA and DSP EDMA Mflag Event Outputs
          2. 5.3.4.2.2 DSP Aggregated Error Interrupt Output
          3. 5.3.4.2.3 Non-DSP C66x CorePac Generated Peripheral Interrupt Outputs
      5. 5.3.5  DSP DMA Requests
        1. 5.3.5.1 DSP EDMA Wakeup Interrupt
      6. 5.3.6  DSP Intergated Memory Management Units
        1. 5.3.6.1 DSP MMUs Overview
        2. 5.3.6.2 Routing MDMA Traffic through DSP MMU0
        3. 5.3.6.3 Routing EDMA Traffic thorugh DSP MMU1
      7. 5.3.7  DSP Integrated EDMA Subsystem
        1. 5.3.7.1 DSP EDMA Overview
        2. 5.3.7.2 DSP System and Device Level Settings of DSP EDMA
      8. 5.3.8  DSP L2 interconnect Network
        1. 5.3.8.1 DSP Public Firewall Settings
        2. 5.3.8.2 DSP NoC Flag Mux and Error Log Registers
        3. 5.3.8.3 DSP NoC Arbitration
      9. 5.3.9  DSP Boot Configuration
      10. 5.3.10 DSP Internal and External Memory Views
        1. 5.3.10.1 C66x CPU View of the Address Space
        2. 5.3.10.2 DSP_EDMA View of the Address Space
        3. 5.3.10.3 L3_MAIN View of the DSP Address Space
    4. 5.4 DSP Subsystem Register Manual
      1. 5.4.1 DSP Subsystem Instance Summary
      2. 5.4.2 DSP_ICFG Registers
        1. 5.4.2.1 DSP_ICFG Register Summary
        2. 5.4.2.2 DSP_ICFG Register Description
      3. 5.4.3 DSP_SYSTEM Registers
        1. 5.4.3.1 DSP_SYSTEM Register Summary
        2. 5.4.3.2 DSP_SYSTEM Register Description
      4. 5.4.4 DSP_FW_L2_NOC_CFG Registers
        1. 5.4.4.1 DSP_FW_L2_NOC_CFG Register Summary
        2. 5.4.4.2 DSP_FW_L2_NOC_CFG Register Description
  8. IVA Subsystem
  9. Dual Cortex-M4 IPU Subsystem
    1. 7.1 Dual Cortex-M4 IPU Subsystem Overview
      1. 7.1.1 Introduction
      2. 7.1.2 Features
    2. 7.2 Dual Cortex-M4 IPU Subsystem Integration
      1. 7.2.1 Dual Cortex-M4 IPU Subsystem Clock and Reset Distribution
        1. 7.2.1.1 Clock Distribution
        2. 7.2.1.2 Reset Distribution
    3. 7.3 Dual Cortex-M4 IPU Subsystem Functional Description
      1. 7.3.1 IPUx Subsystem Block Diagram
      2. 7.3.2 Power Management
        1. 7.3.2.1 Local Power Management
        2. 7.3.2.2 Power Domains
        3. 7.3.2.3 831
        4. 7.3.2.4 Voltage Domain
        5. 7.3.2.5 Power States and Modes
        6. 7.3.2.6 Wake-Up Generator (IPUx_WUGEN)
          1. 7.3.2.6.1 IPUx_WUGEN Main Features
      3. 7.3.3 IPUx_UNICACHE
      4. 7.3.4 IPUx_UNICACHE_MMU
      5. 7.3.5 IPUx_UNICACHE_SCTM
        1. 7.3.5.1 Counter Functions
          1. 7.3.5.1.1 Input Events
          2. 7.3.5.1.2 Counters
            1. 7.3.5.1.2.1 Counting Modes
            2. 7.3.5.1.2.2 Counter Overflow
            3. 7.3.5.1.2.3 Counters and Processor State
            4. 7.3.5.1.2.4 Chaining Counters
            5. 7.3.5.1.2.5 Enabling and Disabling Counters
            6. 7.3.5.1.2.6 Resetting Counters
        2. 7.3.5.2 Timer Functions
          1. 7.3.5.2.1 Periodic Intervals
          2. 7.3.5.2.2 Event Generation
      6. 7.3.6 IPUx_MMU
        1. 7.3.6.1 IPUx_MMU Behavior on Page-Fault in IPUx Subsystem
      7. 7.3.7 Interprocessor Communication (IPC)
        1. 7.3.7.1 Use of WFE and SEV
        2. 7.3.7.2 Use of Interrupt for IPC
        3. 7.3.7.3 Use of the Bit-Band Feature for Semaphore Operations
        4. 7.3.7.4 Private Memory Space
      8. 7.3.8 IPU Boot Options
    4. 7.4 Dual Cortex-M4 IPU Subsystem Register Manual
      1. 7.4.1 IPUx Subsystem Instance Summary
      2. 7.4.2 IPUx_UNICACHE_CFG Registers
        1. 7.4.2.1 IPUx_UNICACHE_CFG Register Summary
        2. 7.4.2.2 IPUx_UNICACHE_CFG Register Description
      3. 7.4.3 IPUx_UNICACHE_SCTM Registers
        1. 7.4.3.1 IPUx_UNICACHE_SCTM Register Summary
        2. 7.4.3.2 IPUx_UNICACHE_SCTM Register Description
      4. 7.4.4 IPUx_UNICACHE_MMU (AMMU) Registers
        1. 7.4.4.1 IPUx_UNICACHE_MMU (AMMU) Register Summary
        2. 7.4.4.2 IPUx_UNICACHE_MMU (AMMU) Register Description
      5. 7.4.5 IPUx_MMU Registers
      6. 7.4.6 IPUx_Cx_INTC Registers
      7. 7.4.7 IPUx_WUGEN Registers
        1. 7.4.7.1 IPUx_WUGEN Register Summary
        2. 7.4.7.2 IPUx_WUGEN Register Description
      8. 7.4.8 IPUx_Cx_RW_TABLE Registers
        1. 7.4.8.1 IPUx_Cx_RW_TABLE Register Summary
        2. 7.4.8.2 IPUx_Cx_RW_TABLE Register Description
  10. Camera Interface Subsystem
    1. 8.1 CAMSS Overview
      1. 8.1.1 CAMSS Block Diagram
      2. 8.1.2 881
      3. 8.1.3 CAMSS Features
    2. 8.2 CAMSS Environment
      1. 8.2.1 CAMSS Interfaces Signal Descriptions
    3. 8.3 CAMSS Integration
      1. 8.3.1 CAMSS Main Integration Attributes
      2. 8.3.2 CAL Integration - Video Port
      3. 8.3.3 CAL Integration - PPI Interface
    4. 8.4 CAMSS Functional Description
      1. 8.4.1 CAMSS Hardware and Software Reset
      2. 8.4.2 CAMSS Clock Configuration
      3. 8.4.3 CAMSS Power Management
      4. 8.4.4 CAMSS Interrupt Events
      5. 8.4.5 CSI2 PHY Functional Description
        1. 8.4.5.1 CSI2 PHY Overview
        2. 8.4.5.2 CSI2 PHY Configuration
        3. 8.4.5.3 CSI2 PHY Link Initialization Sequence
        4. 8.4.5.4 CSI2 PHY Error Signals
      6. 8.4.6 CAL Functional Description
        1. 8.4.6.1  CAL Block Diagram
        2. 8.4.6.2  CSI2 Low Level Protocol
          1. 8.4.6.2.1 CSI2 Physical Layer
          2. 8.4.6.2.2 CSI2 Multi-lane Layer and Lane Merger
          3. 8.4.6.2.3 CSI2 Protocol Layer
            1. 8.4.6.2.3.1  CSI2 Short Packet
            2. 8.4.6.2.3.2  CSI2 Long Packet
            3. 8.4.6.2.3.3  CSI2 ECC and Checksum Generation
              1. 8.4.6.2.3.3.1 CSI2 ECC
              2. 8.4.6.2.3.3.2 CSI2 Checksum
            4. 8.4.6.2.3.4  CSI2 Alignment Constraints
            5. 8.4.6.2.3.5  CSI2 Data Identifier
            6. 8.4.6.2.3.6  CSI2 Virtual Channel ID
            7. 8.4.6.2.3.7  CSI2 Synchronization Codes
            8. 8.4.6.2.3.8  CSI2 Generic Short Packet Codes
            9. 8.4.6.2.3.9  CSI2 Frame Structure and Data
            10. 8.4.6.2.3.10 CSI2 Virtual Channel and Context
          4. 8.4.6.2.4 CSI2 TAG Generation FSM
        3. 8.4.6.3  CAL Data Stream Merger
        4. 8.4.6.4  CAL Pixel Extraction
        5. 8.4.6.5  CAL DPCM Decoding and Encoding
        6. 8.4.6.6  CAL Stream Interleaving
        7. 8.4.6.7  CAL Pixel Packing
        8. 8.4.6.8  CAL Write DMA
          1. 8.4.6.8.1 CAL Write DMA Overview
          2. 8.4.6.8.2 CAL Write DMA Data Cropping
          3. 8.4.6.8.3 CAL Write DMA Buffer Management
          4. 8.4.6.8.4 CAL Write DMA OCP Address Generation
            1. 8.4.6.8.4.1 Write DMA Buffer Base Address
            2. 8.4.6.8.4.2 Write DMA Line Start Address
            3. 8.4.6.8.4.3 Write DMA Data Address
          5. 8.4.6.8.5 CAL Write DMA OCP Transaction Generation
          6. 8.4.6.8.6 CAL Write DMA Real Time Traffic
        9. 8.4.6.9  CAL Video Port
          1. 8.4.6.9.1 CAL Video Port Overview
          2. 8.4.6.9.2 CAL Video Port Pixel Clock Generation
          3. 8.4.6.9.3 CAL Video Port Video Timing Generator
        10. 8.4.6.10 CAL Registers Shadowing
    5. 8.5 CAMSS Register Manual
      1. 8.5.1 CAMSS Instance Summary
      2. 8.5.2 CAL Registers
        1. 8.5.2.1 CAL Register Summary
        2. 8.5.2.2 CAL Register Description
      3. 8.5.3 CSI2 PHY Registers
        1. 8.5.3.1 CSI2 PHY Register Summary
        2. 8.5.3.2 CSI2 PHY Register Description
  11. Video Input Port
    1. 9.1 VIP Overview
    2. 9.2 VIP Environment
    3. 9.3 VIP Integration
    4. 9.4 VIP Functional Description
      1. 9.4.1 VIP Block Diagram
      2. 9.4.2 VIP Software Reset
      3. 9.4.3 VIP Power and Clocks Management
        1. 9.4.3.1 VIP Clocks
        2. 9.4.3.2 VIP Idle Mode
        3. 9.4.3.3 VIP StandBy Mode
      4. 9.4.4 VIP Slice
        1. 9.4.4.1 VIP Slice Processing Path Overview
        2. 9.4.4.2 VIP Slice Processing Path Multiplexers
          1. 9.4.4.2.1 VIP_CSC Multiplexers
          2. 9.4.4.2.2 VIP_SC Multiplexer
          3. 9.4.4.2.3 Output to VPDMA Multiplexers
        3. 9.4.4.3 VIP Slice Processing Path Examples
          1. 9.4.4.3.1 Input: A=RGB, B=YUV422; Output: A=RGB, B=RGB
          2. 9.4.4.3.2 Input: A=YUV422 8/16, B=YUV422; Output: A=Scaled YUV420, B=RGB
          3. 9.4.4.3.3 Input: A=RGB, B=YUV422; Output: A=RGB, B=Scaled YUV420
          4. 9.4.4.3.4 Input: A=YUV444, B=YUV422; Output: A=YUV422, A=Scaled YUV422, B=YUV422
          5. 9.4.4.3.5 Input: A=YUV444; Output: A=Scaled YUV420, A=YUV420
          6. 9.4.4.3.6 Input: A=YUV444; Output: A=Scaled YUV420, A=YUV444
          7. 9.4.4.3.7 Input: A=YUV422 8/16; Output: A=Scaled YUV420, A=YUV444
          8. 9.4.4.3.8 Input: A=YUV422 8/16, B=YUV422; Output: A=Scaled YUV420, B=YUV420
          9. 9.4.4.3.9 Input: A=YUV422 8/16, B=YUV422; Output: A=YUV420, B=YUV420
      5. 9.4.5 VIP Parser
        1. 9.4.5.1  Features
        2. 9.4.5.2  Repacker
        3. 9.4.5.3  Analog Video
        4. 9.4.5.4  Digitized Video
        5. 9.4.5.5  Frame Buffers
        6. 9.4.5.6  Input Data Interface
          1. 9.4.5.6.1  8b Interface Mode
          2. 9.4.5.6.2  16b Interface Mode
          3. 9.4.5.6.3  24b Interface Mode
          4. 9.4.5.6.4  Signal Relationships
          5. 9.4.5.6.5  General 5 Pin Interfaces
          6. 9.4.5.6.6  Signal Subsets—4 Pin VSYNC, ACTVID, and FID
          7. 9.4.5.6.7  Signal Subsets—4 Pin VSYNC, HSYNC, and FID
          8. 9.4.5.6.8  Vertical Sync
          9. 9.4.5.6.9  Field ID Determination Using Dedicated Signal
          10. 9.4.5.6.10 Field ID Determination Using VSYNC Skew
          11. 9.4.5.6.11 Rationale for FID Determination By VSYNC Skew
          12. 9.4.5.6.12 ACTVID Framing
          13. 9.4.5.6.13 Ancillary Data Storage in Descrete Sync Mode
        7. 9.4.5.7  BT.656 Style Embedded Sync
          1. 9.4.5.7.1 Data Input
          2. 9.4.5.7.2 Sync Words
          3. 9.4.5.7.3 Error Correction
          4. 9.4.5.7.4 Embedded Sync Ancillary Data
          5. 9.4.5.7.5 Embedded Sync RGB 24-bit Data
        8. 9.4.5.8  Source Multiplexing
          1. 9.4.5.8.1  Multiplexing Scenarios
          2. 9.4.5.8.2  2-Way Multiplexing
          3. 9.4.5.8.3  4-Way Multiplexing
          4. 9.4.5.8.4  Line Multiplexing
          5. 9.4.5.8.5  Super Frame Concept in Line Multiplexing
          6. 9.4.5.8.6  8-bit Data Interface in Line Multiplexing
          7. 9.4.5.8.7  16-bit Data Interface in Line Multiplexing
          8. 9.4.5.8.8  Split Lines in Line Multiplex Mode
          9. 9.4.5.8.9  Meta Data
          10. 9.4.5.8.10 TI Line Mux Mode, Split Lines, and Channel ID Remapping
        9. 9.4.5.9  Channel ID Extraction for 2x/4x Multiplexed Source
          1. 9.4.5.9.1 Channel ID Extraction Overview
          2. 9.4.5.9.2 Channel ID Embedded in Protection Bits for 2- and 4-Way Multiplexing
          3. 9.4.5.9.3 Channel ID Embedded in Horizontal Blanking Pixel Data for 2- and 4-Way Multiplexing
        10. 9.4.5.10 Embedded Sync Mux Modes and Data Bus Widths
        11. 9.4.5.11 Ancillary and Active Video Cropping
        12. 9.4.5.12 Interrupts
        13. 9.4.5.13 VDET Interrupt
        14. 9.4.5.14 Source Video Size
        15. 9.4.5.15 Clipping
        16. 9.4.5.16 Current and Last FID Value
        17. 9.4.5.17 Disable Handling
        18. 9.4.5.18 Picture Size Interrupt
        19. 9.4.5.19 Discrete Sync Signals
          1. 9.4.5.19.1 VBLNK and HBLNK
          2. 9.4.5.19.2 BLNK and ACTVID (1)
          3. 9.4.5.19.3 VBLNK and ACTVID(2)
          4. 9.4.5.19.4 VBLNK and HSYNC
          5. 9.4.5.19.5 VSYNC and HBLNK
          6. 9.4.5.19.6 VSYNC and ACTIVID(1)
          7. 9.4.5.19.7 VSYNC and ACTIVID(2)
          8. 9.4.5.19.8 VSYNC and HSYNC
          9. 9.4.5.19.9 Line and Pixel Capture Examples
        20. 9.4.5.20 VIP Overflow Detection and Recovery
      6. 9.4.6 VIP Color Space Converter (CSC)
        1. 9.4.6.1 CSC Features
        2. 9.4.6.2 CSC Functional Description
          1. 9.4.6.2.1 HDTV Application
            1. 9.4.6.2.1.1 HDTV Application with Video Data Range
            2. 9.4.6.2.1.2 HDTV Application with Graphics Data Range
            3. 9.4.6.2.1.3 Quantized Coefficients for Color Space Converter in HDTV
          2. 9.4.6.2.2 SDTV Application
            1. 9.4.6.2.2.1 SDTV Application with Video Data Range
            2. 9.4.6.2.2.2 SDTV Application with Graphics Data Range
            3. 9.4.6.2.2.3 Quantized Coefficients for Color Space Converter in SDTV
        3. 9.4.6.3 CSC Bypass Mode
      7. 9.4.7 VIP Scaler (SC)
        1. 9.4.7.1 SC Features
        2. 9.4.7.2 SC Functional Description
          1. 9.4.7.2.1 Trimmer
          2. 9.4.7.2.2 1050
          3. 9.4.7.2.3 Peaking
          4. 9.4.7.2.4 Vertical Scaler
            1. 9.4.7.2.4.1 Running Average Filter
            2. 9.4.7.2.4.2 Vertical Scaler Configuration Parameters
          5. 9.4.7.2.5 Horizontal Scaler
            1. 9.4.7.2.5.1 Half Decimation Filter
            2. 9.4.7.2.5.2 Polyphase Filter
            3. 9.4.7.2.5.3 Nonlinear Horizontal Scaling
            4. 9.4.7.2.5.4 Horizontal Scaler Configuration Registers
          6. 9.4.7.2.6 Basic Configurations
          7. 9.4.7.2.7 Coefficient Memory
            1. 9.4.7.2.7.1 Overview
            2. 9.4.7.2.7.2 Physical Coefficient SRAM Layout
            3. 9.4.7.2.7.3 Scaler Coefficients Packing on 128-bit VPI Control I/F
            4. 9.4.7.2.7.4 VPI Control I/F Memory Map for Scaler Coefficients
            5. 9.4.7.2.7.5 VPI Control Interface
            6. 9.4.7.2.7.6 Coefficient Table Selection Guide
        3. 9.4.7.3 SC Code
          1. 9.4.7.3.1 Generate Coefficient Memory Image
          2. 9.4.7.3.2 Scaler Configuration Calculation
          3. 9.4.7.3.3 Typical Configuration Values
        4. 9.4.7.4 SC Coefficient Data Files
          1. 9.4.7.4.1 HS Polyphase Filter Coefficients
            1. 9.4.7.4.1.1 ppfcoef_scale_eq_1_32_phases_flip.dat
            2. 9.4.7.4.1.2 ppfcoef_scale_eq_8div16_32_phases_flip.dat
            3. 9.4.7.4.1.3 ppfcoef_scale_eq_9div16_32_phases_flip.dat
            4. 9.4.7.4.1.4 ppfcoef_scale_eq_10div16_32_phases_flip.dat
            5. 9.4.7.4.1.5 ppfcoef_scale_eq_11div16_32_phases_flip.dat
            6. 9.4.7.4.1.6 ppfcoef_scale_eq_12div16_32_phases_flip.dat
            7. 9.4.7.4.1.7 ppfcoef_scale_eq_13div16_32_phases_flip.dat
            8. 9.4.7.4.1.8 ppfcoef_scale_eq_14div16_32_phases_flip.dat
            9. 9.4.7.4.1.9 ppfcoef_scale_eq_15div16_32_phases_flip.dat
          2. 9.4.7.4.2 VS Polyphase Filter Coefficients
            1. 9.4.7.4.2.1 ppfcoef_scale_eq_1_32_phases_ver_5tap_flip.dat
            2. 9.4.7.4.2.2 ppfcoef_scale_eq_3_32_phases_flip.dat
            3. 9.4.7.4.2.3 ppfcoef_scale_eq_4_32_phases_flip.dat
            4. 9.4.7.4.2.4 ppfcoef_scale_eq_5_32_phases_flip.dat
            5. 9.4.7.4.2.5 ppfcoef_scale_eq_6_32_phases_flip.dat
            6. 9.4.7.4.2.6 ppfcoef_scale_eq_7_32_phases_flip.dat
              1. 9.4.7.4.2.6.1 ppfcoef_scale_eq_8div16_32_phases_ver_5tap_flip.dat
              2. 9.4.7.4.2.6.2 ppfcoef_scale_eq_9div16_32_phases_ver_5tap_flip.dat
              3. 9.4.7.4.2.6.3 ppfcoef_scale_eq_10div16_32_phases_ver_5tap_flip.dat
              4. 9.4.7.4.2.6.4 ppfcoef_scale_eq_11div16_32_phases_ver_5tap_flip.dat
              5. 9.4.7.4.2.6.5 ppfcoef_scale_eq_12div16_32_phases_ver_5tap_flip.dat
              6. 9.4.7.4.2.6.6 ppfcoef_scale_eq_13div16_32_phases_ver_5tap_flip.dat
              7. 9.4.7.4.2.6.7 ppfcoef_scale_eq_14div16_32_phases_ver_5tap_flip.dat
              8. 9.4.7.4.2.6.8 ppfcoef_scale_eq_15div16_32_phases_ver_5tap_flip.dat
          3. 9.4.7.4.3 VS (Bilinear Filter Coefficients)
            1. 9.4.7.4.3.1 ppfcoef_scale_eq_1_32_phases_flip_PPF3_peak5_gain_eq_1_25.dat
      8. 9.4.8 VIP Video Port Direct Memory Access (VPDMA)
        1. 9.4.8.1  VPDMA Introduction
        2. 9.4.8.2  VPDMA Basic Definitions
          1. 9.4.8.2.1 Client
          2. 9.4.8.2.2 Channel
          3. 9.4.8.2.3 List
          4. 9.4.8.2.4 Data Formats Supported
        3. 9.4.8.3  1107
        4. 9.4.8.4  VPDMA Client Buffering and Functionality
        5. 9.4.8.5  VPDMA Channels Assignment
        6. 9.4.8.6  VPDMA MFLAG Mechanism
        7. 9.4.8.7  VPDMA Interrupts
        8. 9.4.8.8  VPDMA Descriptors
          1. 9.4.8.8.1 Data Transfer Descriptors
            1. 9.4.8.8.1.1 Data Packet Descriptor Word 0 (Data)
              1. 9.4.8.8.1.1.1 Data Type
              2. 9.4.8.8.1.1.2 Notify
              3. 9.4.8.8.1.1.3 Field
              4. 9.4.8.8.1.1.4 Even Line Skip
              5. 9.4.8.8.1.1.5 Odd Line Skip
              6. 9.4.8.8.1.1.6 Line Stride
            2. 9.4.8.8.1.2 Data Packet Descriptor Word 1
              1. 9.4.8.8.1.2.1 Line Length
              2. 9.4.8.8.1.2.2 Transfer Height
            3. 9.4.8.8.1.3 Data Packet Descriptor Word 2
              1. 9.4.8.8.1.3.1 Start Address
            4. 9.4.8.8.1.4 Data Packet Descriptor Word 3
              1. 9.4.8.8.1.4.1 Packet Type
              2. 9.4.8.8.1.4.2 Mode
              3. 9.4.8.8.1.4.3 Direction
              4. 9.4.8.8.1.4.4 Channel
              5. 9.4.8.8.1.4.5 Priority
              6. 9.4.8.8.1.4.6 Next Channel
            5. 9.4.8.8.1.5 Data Packet Descriptor Word 4
              1. 9.4.8.8.1.5.1 Inbound data
                1. 9.4.8.8.1.5.1.1 Frame Width
                2. 9.4.8.8.1.5.1.2 Frame Height
              2. 9.4.8.8.1.5.2 Outbound data
                1. 9.4.8.8.1.5.2.1 Descriptor Write Address
                2. 9.4.8.8.1.5.2.2 Write Descriptor
                3. 9.4.8.8.1.5.2.3 Drop Data
            6. 9.4.8.8.1.6 Data Packet Descriptor Word 5
              1. 9.4.8.8.1.6.1 Outbound data
                1. 9.4.8.8.1.6.1.1 Max Width
                2. 9.4.8.8.1.6.1.2 Max Height
          2. 9.4.8.8.2 Configuration Descriptor
            1. 9.4.8.8.2.1 Configuration Descriptor Header Word0
            2. 9.4.8.8.2.2 Configuration Descriptor Header Word1
              1. 9.4.8.8.2.2.1 Number of Data Words
            3. 9.4.8.8.2.3 Configuration Descriptor Header Word2
              1. 9.4.8.8.2.3.1 Payload Location
            4. 9.4.8.8.2.4 Configuration Descriptor Header Word3
              1. 9.4.8.8.2.4.1 Packet Type
              2. 9.4.8.8.2.4.2 Direct
              3. 9.4.8.8.2.4.3 Class
                1. 9.4.8.8.2.4.3.1 Address Data Block Format
              4. 9.4.8.8.2.4.4 Destination
              5. 9.4.8.8.2.4.5 Descriptor Length
          3. 9.4.8.8.3 Control Descriptor
            1. 9.4.8.8.3.1 Generic Control Descriptor Format
            2. 9.4.8.8.3.2 Control Descriptor Header Description
              1. 9.4.8.8.3.2.1 Packet Type
              2. 9.4.8.8.3.2.2 Source
              3. 9.4.8.8.3.2.3 Control
            3. 9.4.8.8.3.3 Control Descriptor Types
              1. 9.4.8.8.3.3.1 Sync on Client
              2. 9.4.8.8.3.3.2 Sync on List
              3. 9.4.8.8.3.3.3 Sync on External Event
              4. 9.4.8.8.3.3.4 Sync on Channel
              5. 9.4.8.8.3.3.5 Sync on LM Timer
              6. 9.4.8.8.3.3.6 Change Client Interrupt
              7. 9.4.8.8.3.3.7 Send Interrupt
              8. 9.4.8.8.3.3.8 Reload List
              9. 9.4.8.8.3.3.9 Abort Channel
        9. 9.4.8.9  VPDMA Configuration
          1. 9.4.8.9.1 Regular List
          2. 9.4.8.9.2 Video Input Ports
            1. 9.4.8.9.2.1 Multiplexed Data Streams
            2. 9.4.8.9.2.2 Single YUV Color Separate
            3. 9.4.8.9.2.3 Dual YUV Interleaved
        10. 9.4.8.10 VPDMA Data Formats
          1. 9.4.8.10.1 YUV Data Formats
            1. 9.4.8.10.1.1 Y 4:4:4 (Data Type 0)
            2. 9.4.8.10.1.2 Y 4:2:2 (Data Type 1)
            3. 9.4.8.10.1.3 Y 4:2:0 (Data Type 2)
            4. 9.4.8.10.1.4 C 4:4:4 (Data Type 4)
            5. 9.4.8.10.1.5 C 4:2:2 (Data Type 5)
            6. 9.4.8.10.1.6 C 4:2:0 (Data Type 6)
            7. 9.4.8.10.1.7 YC 4:2:2 (Data Type 7)
            8. 9.4.8.10.1.8 YC 4:4:4 (Data Type 8)
            9. 9.4.8.10.1.9 CY 4:2:2 (Data Type 23)
          2. 9.4.8.10.2 RGB Data Formats
            1. 9.4.8.10.2.1  RGB16-565 (Data Type 0)
            2. 9.4.8.10.2.2  ARGB-1555 (Data Type 1)
            3. 9.4.8.10.2.3  ARGB-4444 (Data Type 2)
            4. 9.4.8.10.2.4  RGBA-5551 (Data Type 3)
            5. 9.4.8.10.2.5  RGBA-4444 (Data Type 4)
            6. 9.4.8.10.2.6  ARGB24-6666 (Data Type 5)
            7. 9.4.8.10.2.7  RGB24-888 (Data Type 6)
            8. 9.4.8.10.2.8  ARGB32-8888 (Data Type 7)
            9. 9.4.8.10.2.9  RGBA24-6666 (Data Type 8)
            10. 9.4.8.10.2.10 RGBA32-8888 (Data Type 9)
          3. 9.4.8.10.3 Miscellaneous Data Type
    5. 9.5 VIP Register Manual
      1. 9.5.1 VIP Instance Summary
      2. 9.5.2 VIP Top Level Registers
        1. 9.5.2.1 VIP Top Level Register Summary
        2. 9.5.2.2 VIP Top Level Register Description
      3. 9.5.3 VIP Parser Registers
        1. 9.5.3.1 VIP Parser Register Summary
        2. 9.5.3.2 VIP Parser Register Description
      4. 9.5.4 VIP CSC Registers
        1. 9.5.4.1 VIP CSC Register Summary
        2. 9.5.4.2 VIP CSC Register Description
      5. 9.5.5 VIP SC registers
        1. 9.5.5.1 VIP SC Register Summary
        2. 9.5.5.2 VIP SC Register Description
      6. 9.5.6 VIP VPDMA Registers
        1. 9.5.6.1 VIP VPDMA Register Summary
        2. 9.5.6.2 VIP VPDMA Register Description
  12. 10Video Processing Engine
    1. 10.1 VPE Overview
    2. 10.2 VPE Integration
    3. 10.3 VPE Functional Description
      1. 10.3.1  VPE Block Diagram
      2. 10.3.2  VPE VC1 Range Mapping/Range Reduction
      3. 10.3.3  VPE Deinterlacer (DEI)
        1. 10.3.3.1 Functional Description
        2. 10.3.3.2 Bypass Mode
        3. 10.3.3.3 1229
          1. 10.3.3.3.1 VPDMA Interface
          2. 10.3.3.3.2 MDT
          3. 10.3.3.3.3 EDI
          4. 10.3.3.3.4 FMD
          5. 10.3.3.3.5 MUX
          6. 10.3.3.3.6 LINE BUFFER
      4. 10.3.4  VPE Scaler (SC)
        1. 10.3.4.1 SC Features
        2. 10.3.4.2 SC Functional Description
          1. 10.3.4.2.1 Trimmer
          2. 10.3.4.2.2 1240
          3. 10.3.4.2.3 Peaking
          4. 10.3.4.2.4 Vertical Scaler
            1. 10.3.4.2.4.1 Running Average Filter
            2. 10.3.4.2.4.2 Vertical Scaler Configuration Parameters
          5. 10.3.4.2.5 Horizontal Scaler
            1. 10.3.4.2.5.1 Half Decimation Filter
            2. 10.3.4.2.5.2 Polyphase Filter
            3. 10.3.4.2.5.3 Nonlinear Horizontal Scaling
            4. 10.3.4.2.5.4 Horizontal Scaler Configuration Registers
          6. 10.3.4.2.6 Basic Configurations
          7. 10.3.4.2.7 Coefficient Memory
            1. 10.3.4.2.7.1 Overview
            2. 10.3.4.2.7.2 Physical Coefficient SRAM Layout
            3. 10.3.4.2.7.3 Scaler Coefficients Packing on 128-bit VPI Control I/F
            4. 10.3.4.2.7.4 VPI Control I/F Memory Map for Scaler Coefficients
            5. 10.3.4.2.7.5 VPI Control Interface
            6. 10.3.4.2.7.6 Coefficient Table Selection Guide
        3. 10.3.4.3 SC Code
          1. 10.3.4.3.1 Generate Coefficient Memory Image
          2. 10.3.4.3.2 Scaler Configuration Calculation
          3. 10.3.4.3.3 Typical Configuration Values
        4. 10.3.4.4 SC Coefficient Data Files
          1. 10.3.4.4.1 HS Polyphase Filter Coefficients
            1. 10.3.4.4.1.1 ppfcoef_scale_eq_1_32_phases_flip.dat
            2. 10.3.4.4.1.2 ppfcoef_scale_eq_8div16_32_phases_flip.dat
            3. 10.3.4.4.1.3 ppfcoef_scale_eq_9div16_32_phases_flip.dat
            4. 10.3.4.4.1.4 ppfcoef_scale_eq_10div16_32_phases_flip.dat
            5. 10.3.4.4.1.5 ppfcoef_scale_eq_11div16_32_phases_flip.dat
            6. 10.3.4.4.1.6 ppfcoef_scale_eq_12div16_32_phases_flip.dat
            7. 10.3.4.4.1.7 ppfcoef_scale_eq_13div16_32_phases_flip.dat
            8. 10.3.4.4.1.8 ppfcoef_scale_eq_14div16_32_phases_flip.dat
            9. 10.3.4.4.1.9 ppfcoef_scale_eq_15div16_32_phases_flip.dat
          2. 10.3.4.4.2 VS Polyphase Filter Coefficients
            1. 10.3.4.4.2.1 ppfcoef_scale_eq_1_32_phases_ver_5tap_flip.dat
            2. 10.3.4.4.2.2 ppfcoef_scale_eq_3_32_phases_flip.dat
            3. 10.3.4.4.2.3 ppfcoef_scale_eq_4_32_phases_flip.dat
            4. 10.3.4.4.2.4 ppfcoef_scale_eq_5_32_phases_flip.dat
            5. 10.3.4.4.2.5 ppfcoef_scale_eq_6_32_phases_flip.dat
            6. 10.3.4.4.2.6 ppfcoef_scale_eq_7_32_phases_flip.dat
              1. 10.3.4.4.2.6.1 ppfcoef_scale_eq_8div16_32_phases_ver_5tap_flip.dat
              2. 10.3.4.4.2.6.2 ppfcoef_scale_eq_9div16_32_phases_ver_5tap_flip.dat
              3. 10.3.4.4.2.6.3 ppfcoef_scale_eq_10div16_32_phases_ver_5tap_flip.dat
              4. 10.3.4.4.2.6.4 ppfcoef_scale_eq_11div16_32_phases_ver_5tap_flip.dat
              5. 10.3.4.4.2.6.5 ppfcoef_scale_eq_12div16_32_phases_ver_5tap_flip.dat
              6. 10.3.4.4.2.6.6 ppfcoef_scale_eq_13div16_32_phases_ver_5tap_flip.dat
              7. 10.3.4.4.2.6.7 ppfcoef_scale_eq_14div16_32_phases_ver_5tap_flip.dat
              8. 10.3.4.4.2.6.8 ppfcoef_scale_eq_15div16_32_phases_ver_5tap_flip.dat
              9. 10.3.4.4.2.6.9 ppcoef_scale_1x_ver_5tap.dat
          3. 10.3.4.4.3 VS (Bilinear Filter Coefficients)
            1. 10.3.4.4.3.1 ppfcoef_scale_eq_1_32_phases_flip_PPF3_peak5_gain_eq_1_25.dat
      5. 10.3.5  VPE Color Space Converter (CSC)
        1. 10.3.5.1 CSC Features
        2. 10.3.5.2 CSC Functional Description
        3. 10.3.5.3 1294
          1. 10.3.5.3.1 HDTV Application
            1. 10.3.5.3.1.1 HDTV Application with Video Data Range
            2. 10.3.5.3.1.2 HDTV Application with Graphics Data Range
            3. 10.3.5.3.1.3 Quantized Coefficients for Color Space Converter in HDTV
          2. 10.3.5.3.2 SDTV Application
            1. 10.3.5.3.2.1 SDTV Application with Video Data Range
            2. 10.3.5.3.2.2 SDTV Application with Graphics Data Range
            3. 10.3.5.3.2.3 Quantized Coefficients for Color Space Converter in SDTV
        4. 10.3.5.4 CSC Bypass Mode
      6. 10.3.6  VPE Chroma Up-Sampler (CHR_US)
        1. 10.3.6.1 Features
        2. 10.3.6.2 Functional Description
        3. 10.3.6.3 For Interlaced YUV420 Input Data
        4. 10.3.6.4 Edge Effects
        5. 10.3.6.5 Modes of Operation (VPDMA)
        6. 10.3.6.6 Coefficient Configuration
      7. 10.3.7  VPE Chroma Down-Sampler (CHR_DS)
      8. 10.3.8  VPE YUV422 to YUV444 Conversion
      9. 10.3.9  VPE Video Port Direct Memory Access (VPDMA)
        1. 10.3.9.1 VPDMA Introduction
        2. 10.3.9.2 VPDMA Basic Definitions
          1. 10.3.9.2.1 Client
          2. 10.3.9.2.2 Channel
          3. 10.3.9.2.3 List
          4. 10.3.9.2.4 Data Formats Supported
        3. 10.3.9.3 VPDMA Client Buffering and Functionality
        4. 10.3.9.4 VPDMA Channels Assignment
        5. 10.3.9.5 VPDMA Interrupts
        6. 10.3.9.6 VPDMA Descriptors
          1. 10.3.9.6.1 Data Transfer Descriptors
            1. 10.3.9.6.1.1 Data Packet Descriptor Word 0 (Data)
              1. 10.3.9.6.1.1.1 Data Type
              2. 10.3.9.6.1.1.2 Notify
              3. 10.3.9.6.1.1.3 Field
              4. 10.3.9.6.1.1.4 1D
              5. 10.3.9.6.1.1.5 Even Line Skip
              6. 10.3.9.6.1.1.6 Odd Line Skip
              7. 10.3.9.6.1.1.7 Line Stride
            2. 10.3.9.6.1.2 Data Packet Descriptor Word 1
              1. 10.3.9.6.1.2.1 Line Length
              2. 10.3.9.6.1.2.2 Transfer Height
            3. 10.3.9.6.1.3 Data Packet Descriptor Word 2
              1. 10.3.9.6.1.3.1 Start Address
            4. 10.3.9.6.1.4 Data Packet Descriptor Word 3
              1. 10.3.9.6.1.4.1 Packet Type
              2. 10.3.9.6.1.4.2 Mode
              3. 10.3.9.6.1.4.3 Direction
              4. 10.3.9.6.1.4.4 Channel
              5. 10.3.9.6.1.4.5 Priority
              6. 10.3.9.6.1.4.6 Next Channel
            5. 10.3.9.6.1.5 Data Packet Descriptor Word 4
              1. 10.3.9.6.1.5.1 Inbound data
                1. 10.3.9.6.1.5.1.1 Frame Width
                2. 10.3.9.6.1.5.1.2 Frame Height
              2. 10.3.9.6.1.5.2 Outbound data
                1. 10.3.9.6.1.5.2.1 Descriptor Write Address
                2. 10.3.9.6.1.5.2.2 Write Descriptor
                3. 10.3.9.6.1.5.2.3 Drop Data
                4. 10.3.9.6.1.5.2.4 Use Descriptor Register
            6. 10.3.9.6.1.6 Data Packet Descriptor Word 5
              1. 10.3.9.6.1.6.1 Outbound data
                1. 10.3.9.6.1.6.1.1 Max Width
                2. 10.3.9.6.1.6.1.2 Max Height
            7. 10.3.9.6.1.7 Data Packet Descriptor Word 6/7 (Data)
          2. 10.3.9.6.2 Configuration Descriptor
            1. 10.3.9.6.2.1 Configuration Descriptor Header Word0
            2. 10.3.9.6.2.2 Configuration Descriptor Header Word1
              1. 10.3.9.6.2.2.1 Number of Data Words
            3. 10.3.9.6.2.3 Configuration Descriptor Header Word2
              1. 10.3.9.6.2.3.1 Payload Location
            4. 10.3.9.6.2.4 Configuration Descriptor Header Word3
              1. 10.3.9.6.2.4.1 Packet Type
              2. 10.3.9.6.2.4.2 Direct
              3. 10.3.9.6.2.4.3 Class
                1. 10.3.9.6.2.4.3.1 Address Data Block Format
              4. 10.3.9.6.2.4.4 Destination
              5. 10.3.9.6.2.4.5 Descriptor Length
          3. 10.3.9.6.3 Control Descriptor
            1. 10.3.9.6.3.1 Generic Control Descriptor Format
            2. 10.3.9.6.3.2 Control Descriptor Header Description
              1. 10.3.9.6.3.2.1 Packet Type
              2. 10.3.9.6.3.2.2 Source
              3. 10.3.9.6.3.2.3 Control
            3. 10.3.9.6.3.3 Control Descriptor Types
              1. 10.3.9.6.3.3.1 Sync on Client
              2. 10.3.9.6.3.3.2 Sync on List
              3. 10.3.9.6.3.3.3 Sync on External Event
              4. 10.3.9.6.3.3.4 Sync on Channel
              5. 10.3.9.6.3.3.5 Sync on LM Timer
              6. 10.3.9.6.3.3.6 Change Client Interrupt
              7. 10.3.9.6.3.3.7 Send Interrupt
              8. 10.3.9.6.3.3.8 Reload List
              9. 10.3.9.6.3.3.9 Abort Channel
        7. 10.3.9.7 VPDMA Configuration
          1. 10.3.9.7.1 Regular List
          2. 10.3.9.7.2 Video Input Ports
            1. 10.3.9.7.2.1 Single YUV Color Separate
            2. 10.3.9.7.2.2 Dual YUV Interleaved
            3. 10.3.9.7.2.3 Single RGB Stream
        8. 10.3.9.8 VPDMA Data Formats
          1. 10.3.9.8.1 YUV Data Formats
            1. 10.3.9.8.1.1 Y 4:4:4 (Data Type 0)
            2. 10.3.9.8.1.2 Y 4:2:2 (Data Type 1)
            3. 10.3.9.8.1.3 Y 4:2:0 (Data Type 2)
            4. 10.3.9.8.1.4 C 4:4:4 (Data Type 4)
            5. 10.3.9.8.1.5 C 4:2:2 (Data Type 5)
            6. 10.3.9.8.1.6 C 4:2:0 (Data Type 6)
            7. 10.3.9.8.1.7 YC 4:2:2 (Data Type 7)
            8. 10.3.9.8.1.8 YC 4:4:4 (Data Type 8)
            9. 10.3.9.8.1.9 CY 4:2:2 (Data Type 23)
          2. 10.3.9.8.2 RGB Data Formats
            1. 10.3.9.8.2.1 Input Data Formats
              1. 10.3.9.8.2.1.1  RGB16-565 (Data Type 0)
              2. 10.3.9.8.2.1.2  ARGB-1555 (Data Type 1)
              3. 10.3.9.8.2.1.3  ARGB-4444 (Data Type 2)
              4. 10.3.9.8.2.1.4  RGBA-5551 (Data Type 3)
              5. 10.3.9.8.2.1.5  RGBA-4444 (Data Type 4)
              6. 10.3.9.8.2.1.6  ARGB24-6666 (Data Type 5)
              7. 10.3.9.8.2.1.7  RGB24-888 (Data Type 6)
              8. 10.3.9.8.2.1.8  ARGB32-8888 (Data Type 7)
              9. 10.3.9.8.2.1.9  RGBA24-6666 (Data Type 8)
              10. 10.3.9.8.2.1.10 RGBA32-8888 (Data Type 9)
            2. 10.3.9.8.2.2 Output Data Formats
              1. 10.3.9.8.2.2.1  RGB16-565 (Data Type 0)
              2. 10.3.9.8.2.2.2  ARGB-1555 (Data Type 1)
              3. 10.3.9.8.2.2.3  ARGB-4444 (Data Type 2)
              4. 10.3.9.8.2.2.4  RGBA-5551 (Data Type 3)
              5. 10.3.9.8.2.2.5  RGBA-4444 (Data Type 4)
              6. 10.3.9.8.2.2.6  ARGB24-6666 (Data Type 5)
              7. 10.3.9.8.2.2.7  RGB24-888 (Data Type 6)
              8. 10.3.9.8.2.2.8  ARGB32-8888 (Data Type 7)
              9. 10.3.9.8.2.2.9  RGBA24-6666 (Data Type 8)
              10. 10.3.9.8.2.2.10 RGBA32-8888 (Data Type 9)
          3. 10.3.9.8.3 Miscellaneous Data Type
      10. 10.3.10 VPE Software Reset
      11. 10.3.11 VPE Power and Clocks Management
        1. 10.3.11.1 VPE Clocks
        2. 10.3.11.2 VPE Idle Mode
        3. 10.3.11.3 VPE StandBy Mode
    4. 10.4 VPE Register Manual
      1. 10.4.1 VPE Instance Summary
      2. 10.4.2 VPE_CSC Registers
        1. 10.4.2.1 VPE_CSC Register Summary
        2. 10.4.2.2 VPE_CSC Register Description
      3. 10.4.3 VPE_SC Registers
        1. 10.4.3.1 VPE_SC Register Summary
        2. 10.4.3.2 VPE_SC Register Description
      4. 10.4.4 VPE_CHR_US Registers
        1. 10.4.4.1 VPE_CHR_US Register Summary
        2. 10.4.4.2 VPE_CHR_US Register Description
      5. 10.4.5 VPE_DEI Registers
        1. 10.4.5.1 VPE_DEI Register Summary
        2. 10.4.5.2 VPE_DEI Register Description
      6. 10.4.6 VPE_VPDMA Registers
        1. 10.4.6.1 VPE_VPDMA Register Summary
        2. 10.4.6.2 VPE_VPDMA Register Description
      7. 10.4.7 VPE_TOP_LEVEL Registers
        1. 10.4.7.1 VPE_TOP_LEVEL Register Summary
        2. 10.4.7.2 VPE_TOP_LEVEL Register Description
  13. 11Display Subsystem
    1. 11.1 Display Subsystem Overview
      1. 11.1.1 Display Subsystem Environment
        1. 11.1.1.1 Display Subsystem LCD Support
          1. 11.1.1.1.1 Display Subsystem LCD with Parallel Interfaces
        2. 11.1.1.2 Display Subsystem TV Display Support
          1. 11.1.1.2.1 Display Subsystem TV With Parallel Interfaces
          2. 11.1.1.2.2 Display Subsystem TV With Serial Interfaces
      2. 11.1.2 Display Subsystem Integration
        1. 11.1.2.1 Display Subsystem Clocks
        2. 11.1.2.2 Display Subsystem Resets
        3. 11.1.2.3 Display Subsystem Power Management
          1. 11.1.2.3.1 Display Subsystem Standby Mode
          2. 11.1.2.3.2 1467
          3. 11.1.2.3.3 Display Subsystem Wake-Up Mode
      3. 11.1.3 Display Subsystem DPLL Controllers Functional Description
        1. 11.1.3.1 DPLL Controllers Overview
        2. 11.1.3.2 OCP2SCP2 Functional Description
          1. 11.1.3.2.1 OCP2SCP2 Reset
            1. 11.1.3.2.1.1 Hardware Reset
            2. 11.1.3.2.1.2 Software Reset
          2. 11.1.3.2.2 OCP2SCP2 Power Management
            1. 11.1.3.2.2.1 Idle Mode
            2. 11.1.3.2.2.2 Clock Gating
          3. 11.1.3.2.3 OCP2SCP2 Timing Registers
        3. 11.1.3.3 DPLL_VIDEO Functional Description
          1. 11.1.3.3.1 DPLL_VIDEO Controller Architecture
          2. 11.1.3.3.2 DPLL_VIDEO Operations
          3. 11.1.3.3.3 DPLL_VIDEO Error Handling
          4. 11.1.3.3.4 DPLL_VIDEO Software Reset
          5. 11.1.3.3.5 DPLL_VIDEO Power Management
          6. 11.1.3.3.6 DPLL_VIDEO HSDIVIDER Loading Operation
          7. 11.1.3.3.7 DPLL_VIDEO Clock Sequence
          8. 11.1.3.3.8 DPLL_VIDEO Go Sequence
          9. 11.1.3.3.9 DPLL_VIDEO Recommended Values
        4. 11.1.3.4 DPLL_HDMI Functional Description
          1. 11.1.3.4.1  DPLL_HDMI and PLLCTRL_HDMI Overview
          2. 11.1.3.4.2  DPLL_HDMI and PLLCTRL_HDMI Architecture
          3. 11.1.3.4.3  DPLL_HDMI Operations
          4. 11.1.3.4.4  DPLL_HDMI Register Access
          5. 11.1.3.4.5  DPLL_HDMI Error Handling
          6. 11.1.3.4.6  DPLL_HDMI Software Reset
          7. 11.1.3.4.7  DPLL_HDMI Power Management
          8. 11.1.3.4.8  DPLL_HDMI Lock Sequence
          9. 11.1.3.4.9  DPLL_HDMI Go Sequence
          10. 11.1.3.4.10 DPLL_HDMI Recommended Values
      4. 11.1.4 Display Subsystem Programming Guide
      5. 11.1.5 Display Subsystem Register Manual
        1. 11.1.5.1 Display Subsystem Instance Summary
        2. 11.1.5.2 Display Subsystem Registers
          1. 11.1.5.2.1 Display Subsystem Registers Mapping Summary
          2. 11.1.5.2.2 Display Subsystem Register Description
        3. 11.1.5.3 OCP2SCP2 registers
          1. 11.1.5.3.1 OCP2SCP2 Register Summary
          2. 11.1.5.3.2 OCP2SCP Register Description
        4. 11.1.5.4 DPLL_VIDEO Registers
          1. 11.1.5.4.1 DPLL_VIDEO Register Summary
          2. 11.1.5.4.2 DPLL_VIDEO Register Description
        5. 11.1.5.5 DPLL_HDMI Registers
          1. 11.1.5.5.1 DPLL_HDMI Registers Mapping Summary
          2. 11.1.5.5.2 DPLL_HDMI Register Description
        6. 11.1.5.6 HDMI_WP Registers
          1. 11.1.5.6.1 HDMI_WP Registers Mapping Summary
          2. 11.1.5.6.2 HDMI_WP Register Description
        7. 11.1.5.7 DSI Registers
          1. 11.1.5.7.1 DSI Register Summary
          2. 11.1.5.7.2 DSI Register Description
    2. 11.2 Display Controller
      1. 11.2.1 DISPC Overview
      2. 11.2.2 DISPC Environment
        1. 11.2.2.1 DISPC LCD Output and Data Format for the Parallel Interface
        2. 11.2.2.2 DISPC Transaction Timing Diagrams
        3. 11.2.2.3 DISPC TV Output and Data Format for the Parallel Interface
      3. 11.2.3 DISPC Integration
      4. 11.2.4 DISPC Functional Description
        1. 11.2.4.1  DISPC Clock Configuration
        2. 11.2.4.2  DISPC Software Reset
        3. 11.2.4.3  DISPC Power Management
          1. 11.2.4.3.1 DISPC Idle Mode
          2. 11.2.4.3.2 DISPC StandBy Mode
          3. 11.2.4.3.3 DISPC Wakeup
        4. 11.2.4.4  DISPC Interrupt Requests
        5. 11.2.4.5  DISPC DMA Requests
        6. 11.2.4.6  DISPC DMA Engine
          1. 11.2.4.6.1 DISPC Addressing and Bursts
          2. 11.2.4.6.2 DISPC Immediate Base Address Flip Mechanism
          3. 11.2.4.6.3 DISPC DMA Buffers
            1. 11.2.4.6.3.1 DISPC READ DMA Buffers (GFX and VID Pipelines)
            2. 11.2.4.6.3.2 DISPC WRITE DMA Buffer (WB Pipeline)
          4. 11.2.4.6.4 DISPC MFLAG Mechanism and Arbitration
          5. 11.2.4.6.5 DISPC Predecimation
          6. 11.2.4.6.6 DISPC Progressive-to-Interlaced Format Conversion
          7. 11.2.4.6.7 DISPC Arbitration
          8. 11.2.4.6.8 DISPC DMA Power Modes
            1. 11.2.4.6.8.1 DISPC DMA Low-Power Mode
            2. 11.2.4.6.8.2 DISPC DMA Ultralow-Power Mode
        7. 11.2.4.7  DISPC Rotation and Mirroring
        8. 11.2.4.8  DISPC Memory Format
        9. 11.2.4.9  DISPC Graphics Pipeline
          1. 11.2.4.9.1 DISPC Replication Logic
          2. 11.2.4.9.2 DISPC Antiflicker Filter
        10. 11.2.4.10 DISPC Video Pipelines
          1. 11.2.4.10.1 DISPC Replication Logic
          2. 11.2.4.10.2 DISPC VC-1 Range Mapping Unit
          3. 11.2.4.10.3 DISPC CSC Unit YUV to RGB
            1. 11.2.4.10.3.1 DISPC Chrominance Resampling
          4. 11.2.4.10.4 DISPC Scaler Unit
            1. 11.2.4.10.4.1 DISPC Scaling Algorithms
            2. 11.2.4.10.4.2 DISPC Scaling limitations
        11. 11.2.4.11 DISPC Write-Back Pipeline
          1. 11.2.4.11.1 DISPC Write-Back CSC Unit RGB to YUV
          2. 11.2.4.11.2 DISPC Write-Back Scaler Unit
          3. 11.2.4.11.3 DISPC Write-Back RGB Truncation Logic
        12. 11.2.4.12 DISPC Hardware Cursor
        13. 11.2.4.13 DISPC LCD Outputs
          1. 11.2.4.13.1 DISPC Overlay Manager
            1. 11.2.4.13.1.1 DISPC Priority Rule
            2. 11.2.4.13.1.2 DISPC Alpha Blender
            3. 11.2.4.13.1.3 DISPC Transparency Color Keys
            4. 11.2.4.13.1.4 DISPC Overlay Optimization
          2. 11.2.4.13.2 DISPC Gamma Correction Unit
          3. 11.2.4.13.3 DISPC Color Phase Rotation Unit
          4. 11.2.4.13.4 DISPC Color Space Conversion
          5. 11.2.4.13.5 DISPC BT.656 and BT.1120 Modes
            1. 11.2.4.13.5.1 Blanking
            2. 11.2.4.13.5.2 EAV and SAV
          6. 11.2.4.13.6 DISPC Active Matrix
            1. 11.2.4.13.6.1 DISPC Spatial/Temporal Dithering
            2. 11.2.4.13.6.2 DISPC Multiple Cycle Output Format (TDM)
          7. 11.2.4.13.7 DISPC Synchronized Buffer Update
          8. 11.2.4.13.8 DISPC Timing Generator and Panel Settings
        14. 11.2.4.14 DISPC TV Output
          1. 11.2.4.14.1 DISPC Overlay Manager
          2. 11.2.4.14.2 DISPC Gamma Correction Unit
          3. 11.2.4.14.3 DISPC Synchronized Buffer Update
          4. 11.2.4.14.4 DISPC Timing and TV Format Settings
        15. 11.2.4.15 DISPC Frame Width Considerations
        16. 11.2.4.16 DISPC Extended 3D Support
          1. 11.2.4.16.1 DISPC Extended 3D Support - Line Alternative Format
          2. 11.2.4.16.2 1593
          3. 11.2.4.16.3 DISPC Extended 3D Support - Frame Packing Format Format
          4. 11.2.4.16.4 DISPC Extended 3D Support - DLP 3D Format
        17. 11.2.4.17 DISPC Shadow Registers
      5. 11.2.5 DISPC Programming Guide
        1. 11.2.5.1 DISPC Low-Level Programming Models
          1. 11.2.5.1.1 DISPC Global Initialization
            1. 11.2.5.1.1.1 DISPC Surrounding Modules Global Initialization
          2. 11.2.5.1.2 DISPC Operational Modes Configuration
            1. 11.2.5.1.2.1 DISPC DMA Configuration
              1. 11.2.5.1.2.1.1 DISPC Main Sequence – DISPC DMA Channel Configuration
            2. 11.2.5.1.2.2 DISPC GFX Pipeline Configuration
              1. 11.2.5.1.2.2.1 DISPC Main Sequence – Configure the GFX Pipeline
              2. 11.2.5.1.2.2.2 DISPC Subsequence – Configure the GFX Window
              3. 11.2.5.1.2.2.3 DISPC Subsequence – Configure the GFX Pipeline Processing
              4. 11.2.5.1.2.2.4 DISPC Subsequence – Configure the GFX Pipeline Layer Output
            3. 11.2.5.1.2.3 DISPC Video Pipeline Configuration
              1. 11.2.5.1.2.3.1 DISPC Main Sequence – Configure the Video Pipeline
              2. 11.2.5.1.2.3.2 DISPC Subsequence – Configure the Video Window
              3. 11.2.5.1.2.3.3 DISPC Subsequence – Configure the Video Pipeline Processing
              4. 11.2.5.1.2.3.4 DISPC Subsequence – Configure the VC-1 Range Mapping
              5. 11.2.5.1.2.3.5 DISPC Subsequence – Configure the Video Color Space Conversion
              6. 11.2.5.1.2.3.6 DISPC Subsequence – Configure the Video Scaler Unit
              7. 11.2.5.1.2.3.7 DISPC Subsequence – Configure the Video Pipeline Layer Output
            4. 11.2.5.1.2.4 DISPC WB Pipeline Configuration
              1. 11.2.5.1.2.4.1 DISPC Main Sequence – Configure the WB Pipeline
              2. 11.2.5.1.2.4.2 DISPC Subsequence – Configure the Capture Window
              3. 11.2.5.1.2.4.3 DISPC Subsequence – Configure the WB Scaler Unit
              4. 11.2.5.1.2.4.4 DISPC Subsequence – Configure the WB Color Space Conversion Unit
            5. 11.2.5.1.2.5 DISPC LCD Output Configuration
              1. 11.2.5.1.2.5.1 DISPC Main Sequence – Configure the LCD Output
              2. 11.2.5.1.2.5.2 DISPC Subsequence – Configure the Overlay Manager
              3. 11.2.5.1.2.5.3 DISPC Subsequence – Configure the Gamma Table for Gamma Correction
              4. 11.2.5.1.2.5.4 DISPC Subsequence – Configure the Color Phase Rotation
              5. 11.2.5.1.2.5.5 DISPC Subsequence – Configure the LCD Panel Timings and Parameters
              6. 11.2.5.1.2.5.6 DISPC Subsequence – Configure BT.656 or BT.1120 Mode
            6. 11.2.5.1.2.6 DISPC TV Output Configuration
              1. 11.2.5.1.2.6.1 DISPC Main Sequence – Configure the TV Output
                1. 11.2.5.1.2.6.1.1 DISPC Subsequence – Configure the TV Overlay Manager
                2. 11.2.5.1.2.6.1.2 DISPC Subsequence – Configure the Gamma Table for Gamma Correction
                3. 11.2.5.1.2.6.1.3 DISPC Subsequence – Configure the TV Panel Timings and Parameters
      6. 11.2.6 DISPC Register Manual
        1. 11.2.6.1 DISPC Instance Summary
        2. 11.2.6.2 DISPC Logical Register Mapping
        3. 11.2.6.3 DISPC Registers
          1. 11.2.6.3.1 DISPC Register Summary
          2. 11.2.6.3.2 DISPC Register Description
    3. 11.3 High-Definition Multimedia Interface
      1. 11.3.1 HDMI Overview
        1. 11.3.1.1 HDMI Main Features
        2. 11.3.1.2 HDMI Video Formats and Timings
          1. 11.3.1.2.1 HDMI CEA-861-D Video Formats and Timings
          2. 11.3.1.2.2 VESA DMT Video Formats and Timings
  14. 123D Graphics Accelerator
    1. 12.1 GPU Overview
      1. 12.1.1 GPU Features Overview
      2. 12.1.2 Graphics Feature Overview
    2. 12.2 GPU Integration
    3. 12.3 GPU Functional Description
      1. 12.3.1 GPU Block Diagram
      2. 12.3.2 GPU Clock Configuration
      3. 12.3.3 GPU Software Reset
      4. 12.3.4 GPU Power Management
      5. 12.3.5 GPU Thermal Management
      6. 12.3.6 GPU Interrupt Requests
    4. 12.4 GPU Register Manual
      1. 12.4.1 GPU Instance Summary
      2. 12.4.2 GPU Registers
        1. 12.4.2.1 GPU_WRAPPER Register Summary
        2. 12.4.2.2 GPU_WRAPPER Register Description
  15. 132D Graphics Accelerator
    1. 13.1 BB2D Overview
      1. 13.1.1 BB2D Key Features Overview
    2. 13.2 BB2D Integration
    3. 13.3 BB2D Functional Description
      1. 13.3.1 BB2D Block Diagram
      2. 13.3.2 BB2D Clock Configuration
      3. 13.3.3 BB2D Software Reset
      4. 13.3.4 BB2D Power Management
    4. 13.4 BB2D Register Manual
      1. 13.4.1 BB2D Instance Summary
      2. 13.4.2 BB2D Registers
        1. 13.4.2.1 BB2D Register Summary
        2. 13.4.2.2 BB2D Register Description
  16. 14Interconnect
    1. 14.1 Interconnect Overview
      1. 14.1.1 Terminology
      2. 14.1.2 Architecture Overview
    2. 14.2 L3_MAIN Interconnect
      1. 14.2.1 L3_MAIN Interconnect Overview
      2. 14.2.2 L3_MAIN Interconnect Integration
      3. 14.2.3 L3_MAIN Interconnect Functional Description
        1. 14.2.3.1 Module Use in L3_MAIN Interconnect
        2. 14.2.3.2 Module Distribution
          1. 14.2.3.2.1 L3_MAIN Interconnect Agents
          2. 14.2.3.2.2 L3_MAIN Connectivity Matrix
            1. 14.2.3.2.2.1 Clock Domain Mapping of the L3_MAIN Interconnect Modules
            2. 14.2.3.2.2.2 1690
          3. 14.2.3.2.3 Master NIU Identification
        3. 14.2.3.3 Bandwidth Regulators
        4. 14.2.3.4 Bandwidth Limiters
        5. 14.2.3.5 Flag Muxing
          1. 14.2.3.5.1 Flag Mux Time-out
        6. 14.2.3.6 Statistic Collectors Group
        7. 14.2.3.7 L3_MAIN Protection and Firewalls
          1. 14.2.3.7.1 L3_MAIN Firewall Reset
            1. 14.2.3.7.1.1 L3_MAIN Firewall – Exported Reset Values
          2. 14.2.3.7.2 Power Management
          3. 14.2.3.7.3 L3_MAIN Firewall Functionality
            1. 14.2.3.7.3.1 Protection Regions
            2. 14.2.3.7.3.2 L3_MAIN Firewall Registers Overview
            3. 14.2.3.7.3.3 Protection Mechanism per Region Examples
            4. 14.2.3.7.3.4 L3_MAIN Firewall Error Logging
            5. 14.2.3.7.3.5 L3_MAIN Firewall Default Configuration
        8. 14.2.3.8 L3_MAIN Interconnect Error Handling
          1. 14.2.3.8.1 Global Error-Routing Scheme
          2. 14.2.3.8.2 Slave NIU Error Logging
          3. 14.2.3.8.3 Flag Mux Error Logging
          4. 14.2.3.8.4 Severity Level of Standard and Custom Errors
          5. 14.2.3.8.5 Example for Decoding Standard/Custom Errors Logged in L3_MAIN
      4. 14.2.4 L3_MAIN Interconnect Programming Guide
        1. 14.2.4.1 L3 _MAIN Interconnect Low-Level Programming Models
          1. 14.2.4.1.1 Global Initialization
            1. 14.2.4.1.1.1 Global Initialization of Surrounding Modules
        2. 14.2.4.2 Operational Modes Configuration
          1. 14.2.4.2.1 L3_MAIN Interconnect Error Analysis Mode
            1. 14.2.4.2.1.1 Main Sequence: L3_MAIN Interconnect Error Analysis Mode
              1. 14.2.4.2.1.1.1 Subsequence: L3_MAIN Custom Error Identification
              2. 14.2.4.2.1.1.2 Subsequence: L3_MAIN Interconnect Protection Violation Error Identification
              3. 14.2.4.2.1.1.3 Subsequence: L3_MAIN Interconnect Standard Error Identification
              4. 14.2.4.2.1.1.4 Subsequence: L3_MAIN Interconnect FLAGMUX Configuration
      5. 14.2.5 L3_MAIN Interconnect Register Manual
        1. 14.2.5.1 L3_MAIN Register Group Summary
          1. 14.2.5.1.1 L3_MAIN Firewall Registers Summary and Description
            1. 14.2.5.1.1.1 L3_MAIN Firewall Registers Summary
            2. 14.2.5.1.1.2 L3_MAIN Firewall Registers Description
          2. 14.2.5.1.2 L3_MAIN Host Register Summary and Description
            1. 14.2.5.1.2.1 L3_MAIN HOST Register Summary
            2. 14.2.5.1.2.2 L3_MAIN HOST Register Description
          3. 14.2.5.1.3 L3_MAIN TARG Register Summary and Description
            1. 14.2.5.1.3.1 L3_MAIN TARG Register Summary
            2. 14.2.5.1.3.2 L3_MAIN TARG Register Description
          4. 14.2.5.1.4 L3_MAIN FLAGMUX Registers Summary and Description
            1. 14.2.5.1.4.1 L3_MAIN FLAGMUX Registers Summary
            2. 14.2.5.1.4.2 L3_MAIN FLAGMUX Rebisters Description
          5. 14.2.5.1.5 L3_MAIN FLAGMUX CLK1MERGE Registers Summary and Description
            1. 14.2.5.1.5.1 L3_MAIN FLAGMUX CLK1MERGE Registers Summary
            2. 14.2.5.1.5.2 L3_MAIN FLAGMUX CLK1MERGE Registers Description
          6. 14.2.5.1.6 L3_MAIN FLAGMUX TIMEOUT Registers Summary and Description
            1. 14.2.5.1.6.1 L3_MAIN FLAGMUX TIMEOUT Registers Summary
            2. 14.2.5.1.6.2 L3_MAIN FLAGMUX TIMEOUT Registers Description
          7. 14.2.5.1.7 L3_MAIN BW Regulator Register Summary and Description
            1. 14.2.5.1.7.1 L3_MAIN BW_REGULATOR Register Summary
            2. 14.2.5.1.7.2 L3_MAIN BW_REGULATOR Register Description
          8. 14.2.5.1.8 L3_MAIN Bandwidth Limiter Register Summary and Description
            1. 14.2.5.1.8.1 L3_MAIN BW Limiter Register Summary
            2. 14.2.5.1.8.2 L3_MAIN BW Limiter Register Description
          9. 14.2.5.1.9 L3_MAIN STATCOLL Register Summary and Description
            1. 14.2.5.1.9.1 L3_MAIN STATCOLL Register Summary
            2. 14.2.5.1.9.2 L3_MAIN STATCOLL Register Description
    3. 14.3 L4 Interconnects
      1. 14.3.1 L4 Interconnect Overview
      2. 14.3.2 L4 Interconnect Integration
      3. 14.3.3 L4 Interconnect Functional Description
        1. 14.3.3.1 Module Distribution
          1. 14.3.3.1.1 L4_PER1 Interconnect Agents
          2. 14.3.3.1.2 L4_PER2 Interconnect Agents
          3. 14.3.3.1.3 L4_PER3 Interconnect Agents
          4. 14.3.3.1.4 L4_CFG Interconnect Agents
          5. 14.3.3.1.5 L4_WKUP Interconnect Agents
        2. 14.3.3.2 Power Management
        3. 14.3.3.3 L4 Firewalls
          1. 14.3.3.3.1 Protection Group
          2. 14.3.3.3.2 Segments and Regions
          3. 14.3.3.3.3 L4 Firewall Address and Protection Register Settings
        4. 14.3.3.4 L4 Error Detection and Reporting
          1. 14.3.3.4.1 IA and TA Error Detection and Logging
          2. 14.3.3.4.2 Time-Out
          3. 14.3.3.4.3 Error Reporting
          4. 14.3.3.4.4 Error Recovery
          5. 14.3.3.4.5 Firewall Error Logging in the Control Module
      4. 14.3.4 L4 Interconnect Programming Guide
        1. 14.3.4.1 L4 Interconnect Low-level Programming Models
          1. 14.3.4.1.1 Global Initialization
            1. 14.3.4.1.1.1 Surrounding Modules Global Initialization
          2. 14.3.4.1.2 Operational Modes Configuration
            1. 14.3.4.1.2.1 L4 Interconnect Error Analysis Mode
              1. 14.3.4.1.2.1.1 Main Sequence: L4 Interconnect Error Analysis Mode
              2. 14.3.4.1.2.1.2 Subsequence: L4 Interconnect Protection Violation Error Identification
              3. 14.3.4.1.2.1.3 Subsequence: L4 Interconnect Unsupported Command/Address Hole Error Identification
              4. 14.3.4.1.2.1.4 Subsequence: L4 Interconnect Reset TA and Module
            2. 14.3.4.1.2.2 L4 Interconnect Time-Out Configuration Mode
              1. 14.3.4.1.2.2.1 Main Sequence: L4 Interconnect Time-Out Configuration Mode
            3. 14.3.4.1.2.3 L4 Interconnect Firewall Configuration Mode
              1. 14.3.4.1.2.3.1 Main Sequence: L4 Interconnect Firewall Configuration Mode
      5. 14.3.5 L4 Interconnects Register Manual
        1. 14.3.5.1 L4 Interconnects Instance Summary
        2. 14.3.5.2 L4 Initiator Agent (L4 IA)
          1. 14.3.5.2.1 L4 Initiator Agent (L4 IA) Register Summary
          2. 14.3.5.2.2 L4 Initiator Agent (L4 IA) Register Description
        3. 14.3.5.3 L4 Target Agent (L4 TA)
          1. 14.3.5.3.1 L4 Target Agent (L4 TA) Register Summary
          2. 14.3.5.3.2 L4 Target Agent (L4 TA) Register Description
        4. 14.3.5.4 L4 Link Agent (L4 LA)
          1. 14.3.5.4.1 L4 Link Agent (L4 LA) Register Summary
          2. 14.3.5.4.2 L4 Link Agent (L4 LA) Register Description
        5. 14.3.5.5 L4 Address Protection (L4 AP)
          1. 14.3.5.5.1 L4 Address Protection (L4 AP) Register Summary
          2. 14.3.5.5.2 L4 Address Protection (L4 AP) Register Description
  17. 15Memory Subsystem
    1. 15.1 Memory Subsystem Overview
      1. 15.1.1 DMM Overview
      2. 15.1.2 TILER Overview
      3. 15.1.3 EMIF Overview
      4. 15.1.4 GPMC Overview
      5. 15.1.5 ELM Overview
      6. 15.1.6 OCM Overview
    2. 15.2 Dynamic Memory Manager
      1. 15.2.1 DMM Overview
      2. 15.2.2 DMM Integration
        1. 15.2.2.1 DMM Configuration
      3. 15.2.3 DMM Functional Description
        1. 15.2.3.1 DMM Block Diagram
        2. 15.2.3.2 DMM Clock Configuration
        3. 15.2.3.3 DMM Power Management
        4. 15.2.3.4 DMM Interrupt Requests
        5. 15.2.3.5 DMM
          1. 15.2.3.5.1 DMM Concepts
            1. 15.2.3.5.1.1 Dynamic Mapping
            2. 15.2.3.5.1.2 Address Mapping
            3. 15.2.3.5.1.3 Address Translation
              1. 15.2.3.5.1.3.1 PAT View Mappings
              2. 15.2.3.5.1.3.2 PAT View Map Base Address
              3. 15.2.3.5.1.3.3 PAT Views
                1. 15.2.3.5.1.3.3.1 PAT Direct Access Translation
                2. 15.2.3.5.1.3.3.2 PAT Indirect Access Translation
                3. 15.2.3.5.1.3.3.3 PAT View Configuration
                4. 15.2.3.5.1.3.3.4 PAT Address Translation LUT
                5. 15.2.3.5.1.3.3.5 Direct Access to the PAT Table Vectors
                6. 15.2.3.5.1.3.3.6 Automatic Refill Through the Refill Engines
          2. 15.2.3.5.2 DMM Transaction Flows
            1. 15.2.3.5.2.1 Nontiled Transaction Flow
            2. 15.2.3.5.2.2 Tiled Transaction Flow
          3. 15.2.3.5.3 DMM Internal Macro-Architecture
            1. 15.2.3.5.3.1 LISA Description
            2. 15.2.3.5.3.2 PAT Description
            3. 15.2.3.5.3.3 PEG Description
            4. 15.2.3.5.3.4 LISA Interconnect Arbitration
            5. 15.2.3.5.3.5 ROBIN Description
            6. 15.2.3.5.3.6 TILER Description
        6. 15.2.3.6 TILER
          1. 15.2.3.6.1 TILER Concepts
            1. 15.2.3.6.1.1 TILER Rationale
              1. 15.2.3.6.1.1.1 The TILER is a 4-GiB Virtual Address Space Composed of Eight Views
              2. 15.2.3.6.1.1.2 A View is a 512-MiB Virtual Address Space Composed of Four Containers
              3. 15.2.3.6.1.1.3 A Container is a 128-MiB Virtual Address Space
              4. 15.2.3.6.1.1.4 A Page is a 4-kiB Virtual Address Space
              5. 15.2.3.6.1.1.5 A Tile is a 1-kiB Address Space
              6. 15.2.3.6.1.1.6 1851
              7. 15.2.3.6.1.1.7 A Subtile is a 128-Bit Address Space
            2. 15.2.3.6.1.2 TILER Modes
              1. 15.2.3.6.1.2.1 Bypass Mode
              2. 15.2.3.6.1.2.2 Page Mode
              3. 15.2.3.6.1.2.3 Tiled Mode
            3. 15.2.3.6.1.3 Object Container Definition
            4. 15.2.3.6.1.4 Page Definition
              1. 15.2.3.6.1.4.1 Container Geometry With 4-kiB Pages
              2. 15.2.3.6.1.4.2 Container Geometry and Page Mapping Summary
            5. 15.2.3.6.1.5 Orientation
            6. 15.2.3.6.1.6 Tile Definition
            7. 15.2.3.6.1.7 Subtiles
              1. 15.2.3.6.1.7.1 Subtiling Definition
            8. 15.2.3.6.1.8 TILER Virtual Addressing
              1. 15.2.3.6.1.8.1 Page Mode Virtual Addressing and Characteristics
              2. 15.2.3.6.1.8.2 Tiled Mode Virtual Addressing and Characteristics
              3. 15.2.3.6.1.8.3 Element Ordering in the TILER Container
                1. 15.2.3.6.1.8.3.1 Natural View or 0-Degree View (Orientation 0)
                2. 15.2.3.6.1.8.3.2 0-Degree View With Vertical Mirror or 180-Degree View With Horizontal Mirror (Orientation 1)
                3. 15.2.3.6.1.8.3.3 0-Degree View With Horizontal Mirror or 180-Degree View With Vertical Mirror (Orientation 2)
                4. 15.2.3.6.1.8.3.4 180-Degree View (Orientation 3)
                5. 15.2.3.6.1.8.3.5 90-Degree View With Vertical Mirror or 270-Degree View With Horizontal Mirror (Orientation 4)
                6. 15.2.3.6.1.8.3.6 270-Degree View (Orientation 5)
                7. 15.2.3.6.1.8.3.7 90-Degree View (Orientation 6)
                8. 15.2.3.6.1.8.3.8 90-Degree View With Horizontal Mirror or 270-Degree View With Vertical Mirror (Orientation 7)
          2. 15.2.3.6.2 TILER Macro-Architecture
          3. 15.2.3.6.3 TILER Guidelines for Initiators
            1. 15.2.3.6.3.1 Buffered Raster-Based Initiators
              1. 15.2.3.6.3.1.1 Buffer Size
              2. 15.2.3.6.3.1.2 Performance
      4. 15.2.4 DMM Use Cases and Tips
        1. 15.2.4.1 PAT Use Cases
          1. 15.2.4.1.1 Simple Manual Area Refill
          2. 15.2.4.1.2 Single Auto-Configured Area Refill
          3. 15.2.4.1.3 Chained Auto-Configured Area Refill
          4. 15.2.4.1.4 Synchronized Auto-Configured Area Refill
          5. 15.2.4.1.5 Cyclic Synchronized Auto-Configured Area Refill
        2. 15.2.4.2 Addressing Management with LISA
          1. 15.2.4.2.1 Case 1: Use of One Memory Controller
      5. 15.2.5 DMM Basic Programming Model
        1. 15.2.5.1 Global Initialization
        2. 15.2.5.2 DMM Module Global Initialization
        3. 15.2.5.3 DMM Operational Modes Configuration
          1. 15.2.5.3.1 Different Operational Modes
          2. 15.2.5.3.2 Configuration Settings and LUT Refill
          3. 15.2.5.3.3 LISA Settings
          4. 15.2.5.3.4 Aliased Tiled View Orientation Settings and LUT Refill
          5. 15.2.5.3.5 Priority Settings
          6. 15.2.5.3.6 Error Handling
          7. 15.2.5.3.7 PAT Programming Model
            1. 15.2.5.3.7.1 PAT in Direct Translation Mode
            2. 15.2.5.3.7.2 PAT in Indirect Translation Mode
        4. 15.2.5.4 Addressing an Object in Tiled Mode
          1. 15.2.5.4.1 Frame-Buffer Addressing
          2. 15.2.5.4.2 TILER Page Mapping
        5. 15.2.5.5 Addressing an Object in Page Mode
        6. 15.2.5.6 Sharing Containers Between Different Modes
      6. 15.2.6 DMM Register Manual
        1. 15.2.6.1 DMM Instance Summary
        2. 15.2.6.2 DMM Registers
          1. 15.2.6.2.1 DMM Register Summary
          2. 15.2.6.2.2 DMM Register Description
    3. 15.3 EMIF Controller
      1. 15.3.1 EMIF Controller Overview
      2. 15.3.2 EMIF Module Environment
      3. 15.3.3 EMIF Module Integration
      4. 15.3.4 EMIF Functional Description
        1. 15.3.4.1  Block Diagram
          1. 15.3.4.1.1 Local Interface
          2. 15.3.4.1.2 FIFO Description
          3. 15.3.4.1.3 MPU Port Restrictions
          4. 15.3.4.1.4 Arbitration of Commands in the Command FIFO
        2. 15.3.4.2  Clock Management
          1. 15.3.4.2.1 EMIF_FICLK Overview
          2. 15.3.4.2.2 EMIF Dependency on MPU Clock Rate
        3. 15.3.4.3  Reset
        4. 15.3.4.4  System Power Management
          1. 15.3.4.4.1 Power-Down Mode
          2. 15.3.4.4.2 Self-Refresh Mode
        5. 15.3.4.5  Interrupt Requests
        6. 15.3.4.6  SDRAM Refresh Scheduling
        7. 15.3.4.7  SDRAM Initialization
          1. 15.3.4.7.1 DDR3/DDR3L SDRAM Initialization
        8. 15.3.4.8  DDR3/DDR3L Read-Write Leveling
          1. 15.3.4.8.1 Full Leveling
          2. 15.3.4.8.2 Software Leveling
        9. 15.3.4.9  EMIF Access Cycles
        10. 15.3.4.10 Turnaround Time
        11. 15.3.4.11 PHY DLL Calibration
        12. 15.3.4.12 SDRAM Address Mapping
          1. 15.3.4.12.1  Address Mapping for IBANK_POS = 0 and EBANK_POS = 0
          2. 15.3.4.12.2  Address Mapping for IBANK_POS = 1 and EBANK_POS = 0
          3. 15.3.4.12.3  Address Mapping for IBANK_POS = 2 and EBANK_POS = 0
          4. 15.3.4.12.4  Address Mapping for IBANK_POS = 3 and EBANK_POS = 0
          5. 15.3.4.12.5  Address Mapping for IBANK_POS = 0 and EBANK_POS = 1
          6. 15.3.4.12.6  Address Mapping for IBANK_POS = 1 and EBANK_POS = 1
          7. 15.3.4.12.7  Address Mapping for IBANK_POS = 2 and EBANK_POS = 1
          8. 15.3.4.12.8  1949
          9. 15.3.4.12.9  Address Mapping for IBANK_POS = 3 and EBANK_POS = 1
          10. 15.3.4.12.10 1951
        13. 15.3.4.13 DDR3/DDR3L Output Impedance Calibration
        14. 15.3.4.14 Error Correction And Detection Feature
        15. 15.3.4.15 Class of Service
        16. 15.3.4.16 Performance Counters
          1. 15.3.4.16.1 Performance Counters General Examples
        17. 15.3.4.17 Forcing CKE to tri-state
      5. 15.3.5 EMIF Programming Guide
        1. 15.3.5.1 EMIF Low-Level Programming Models
          1. 15.3.5.1.1 Global Initialization
            1. 15.3.5.1.1.1 EMIF Configuration Sequence
          2. 15.3.5.1.2 Operational Modes Configuration
            1. 15.3.5.1.2.1 EMIF Output Impedance Calibration Mode
            2. 15.3.5.1.2.2 EMIF SDRAM Self-Refresh
            3. 15.3.5.1.2.3 EMIF SDRAM Power-Down Mode
            4. 15.3.5.1.2.4 EMIF ECC Configuration
      6. 15.3.6 EMIF Register Manual
        1. 15.3.6.1 EMIF Instance Summary
        2. 15.3.6.2 EMIF Registers
          1. 15.3.6.2.1 EMIF Register Summary
          2. 15.3.6.2.2 EMIF Register Description
    4. 15.4 General-Purpose Memory Controller
      1. 15.4.1 GPMC Overview
      2. 15.4.2 GPMC Environment
        1. 15.4.2.1 GPMC Modes
        2. 15.4.2.2 GPMC Signals
      3. 15.4.3 GPMC Integration
      4. 15.4.4 GPMC Functional Description
        1. 15.4.4.1  GPMC Block Diagram
        2. 15.4.4.2  GPMC Clock Configuration
        3. 15.4.4.3  GPMC Software Reset
        4. 15.4.4.4  GPMC Power Management
        5. 15.4.4.5  GPMC Interrupt Requests
        6. 15.4.4.6  L3 Interconnect Interface
        7. 15.4.4.7  GPMC Address and Data Bus
          1. 15.4.4.7.1 GPMC I/O Configuration Setting
          2. 15.4.4.7.2 GPMC CS0 Default Configuration at Device Reset
        8. 15.4.4.8  Address Decoder and Chip-Select Configuration
          1. 15.4.4.8.1 Chip-Select Base Address and Region Size
          2. 15.4.4.8.2 Access Protocol
            1. 15.4.4.8.2.1 Supported Devices
            2. 15.4.4.8.2.2 Access Size Adaptation and Device Width
            3. 15.4.4.8.2.3 Address/Data-Multiplexing Interface
          3. 15.4.4.8.3 External Signals
            1. 15.4.4.8.3.1 Wait Pin Monitoring Control
              1. 15.4.4.8.3.1.1 Wait Monitoring During Asynchronous Read Access
              2. 15.4.4.8.3.1.2 Wait Monitoring During Asynchronous Write Access
              3. 15.4.4.8.3.1.3 Wait Monitoring During Synchronous Read Access
              4. 15.4.4.8.3.1.4 Wait Monitoring During Synchronous Write Access
              5. 15.4.4.8.3.1.5 Wait With NAND Device
              6. 15.4.4.8.3.1.6 Idle Cycle Control Between Successive Accesses
                1. 15.4.4.8.3.1.6.1 Bus Turnaround (BUSTURNAROUND)
                2. 15.4.4.8.3.1.6.2 Idle Cycles Between Accesses to Same Chip-Select (CYCLE2CYCLESAMECSEN, CYCLE2CYCLEDELAY)
                3. 15.4.4.8.3.1.6.3 Idle Cycles Between Accesses to Different Chip-Select (CYCLE2CYCLEDIFFCSEN, CYCLE2CYCLEDELAY)
              7. 15.4.4.8.3.1.7 Slow Device Support (TIMEPARAGRANULARITY Parameter)
            2. 15.4.4.8.3.2 Reset
            3. 15.4.4.8.3.3 Byte Enable (nBE1/nBE0)
          4. 15.4.4.8.4 Error Handling
        9. 15.4.4.9  Timing Setting
          1. 15.4.4.9.1  Read Cycle Time and Write Cycle Time (RDCYCLETIME / WRCYCLETIME)
          2. 15.4.4.9.2  nCS: Chip-Select Signal Control Assertion/Deassertion Time (CSONTIME / CSRDOFFTIME / CSWROFFTIME / CSEXTRADELAY)
          3. 15.4.4.9.3  nADV/ALE: Address Valid/Address Latch Enable Signal Control Assertion/Deassertion Time (ADVONTIME / ADVRDOFFTIME / ADVWROFFTIME / ADVEXTRADELAY/ADVAADMUXONTIME/ADVAADMUXRDOFFTIME/ADVAADMUXWROFFTIME)
          4. 15.4.4.9.4  nOE/nRE: Output Enable/Read Enable Signal Control Assertion/Deassertion Time (OEONTIME / OEOFFTIME / OEEXTRADELAY / OEAADMUXONTIME / OEAADMUXOFFTIME)
          5. 15.4.4.9.5  nWE: Write Enable Signal Control Assertion/Deassertion Time (WEONTIME / WEOFFTIME / WEEXTRADELAY)
          6. 15.4.4.9.6  GPMC_CLK
          7. 15.4.4.9.7  GPMC_CLK and Control Signals Setup and Hold
          8. 15.4.4.9.8  Access Time (RDACCESSTIME / WRACCESSTIME)
            1. 15.4.4.9.8.1 Access Time on Read Access
            2. 15.4.4.9.8.2 Access Time on Write Access
          9. 15.4.4.9.9  Page Burst Access Time (PAGEBURSTACCESSTIME)
            1. 15.4.4.9.9.1 Page Burst Access Time on Read Access
            2. 15.4.4.9.9.2 Page Burst Access Time on Write Access
          10. 15.4.4.9.10 Bus Keeping Support
        10. 15.4.4.10 NOR Access Description
          1. 15.4.4.10.1 Asynchronous Access Description
            1. 15.4.4.10.1.1 Access on Address/Data Multiplexed Devices
              1. 15.4.4.10.1.1.1 Asynchronous Single-Read Operation on an Address/Data Multiplexed Device
              2. 15.4.4.10.1.1.2 Asynchronous Single-Write Operation on an Address/Data-Multiplexed Device
              3. 15.4.4.10.1.1.3 Asynchronous Multiple (Page) Write Operation on an Address/Data-Multiplexed Device
            2. 15.4.4.10.1.2 Access on Address/Address/Data-Multiplexed Devices
              1. 15.4.4.10.1.2.1 Asynchronous Single Read Operation on an AAD-Multiplexed Device
              2. 15.4.4.10.1.2.2 Asynchronous Single-Write Operation on an AAD-Multiplexed Device
              3. 15.4.4.10.1.2.3 Asynchronous Multiple (Page) Read Operation on an AAD-Multiplexed Device
          2. 15.4.4.10.2 Synchronous Access Description
            1. 15.4.4.10.2.1 Synchronous Single Read
            2. 15.4.4.10.2.2 Synchronous Multiple (Burst) Read (4-, 8-, 16-Word16 Burst With Wraparound Capability)
            3. 15.4.4.10.2.3 Synchronous Single Write
            4. 15.4.4.10.2.4 Synchronous Multiple (Burst) Write
          3. 15.4.4.10.3 Asynchronous and Synchronous Accesses in Nonmultiplexed Mode
            1. 15.4.4.10.3.1 Asynchronous Single-Read Operation on Nonmultiplexed Device
            2. 15.4.4.10.3.2 Asynchronous Single-Write Operation on Nonmultiplexed Device
            3. 15.4.4.10.3.3 Asynchronous Multiple (Page Mode) Read Operation on Nonmultiplexed Device
            4. 15.4.4.10.3.4 Synchronous Operations on a Nonmultiplexed Device
          4. 15.4.4.10.4 Page and Burst Support
          5. 15.4.4.10.5 System Burst vs External Device Burst Support
        11. 15.4.4.11 pSRAM Access Specificities
        12. 15.4.4.12 NAND Access Description
          1. 15.4.4.12.1 NAND Memory Device in Byte or 16-bit Word Stream Mode
            1. 15.4.4.12.1.1 Chip-Select Configuration for NAND Interfacing in Byte or Word Stream Mode
            2. 15.4.4.12.1.2 NAND Device Command and Address Phase Control
            3. 15.4.4.12.1.3 Command Latch Cycle
            4. 15.4.4.12.1.4 Address Latch Cycle
            5. 15.4.4.12.1.5 NAND Device Data Read and Write Phase Control in Stream Mode
            6. 15.4.4.12.1.6 NAND Device General Chip-Select Timing Control Requirement
            7. 15.4.4.12.1.7 Read and Write Access Size Adaptation
              1. 15.4.4.12.1.7.1 8-Bit-Wide NAND Device
              2. 15.4.4.12.1.7.2 16-Bit-Wide NAND Device
          2. 15.4.4.12.2 NAND Device-Ready Pin
            1. 15.4.4.12.2.1 Ready Pin Monitored by Software Polling
            2. 15.4.4.12.2.2 Ready Pin Monitored by Hardware Interrupt
          3. 15.4.4.12.3 ECC Calculator
            1. 15.4.4.12.3.1 Hamming Code
              1. 15.4.4.12.3.1.1 ECC Result Register and ECC Computation Accumulation Size
              2. 15.4.4.12.3.1.2 ECC Enabling
              3. 15.4.4.12.3.1.3 ECC Computation
              4. 15.4.4.12.3.1.4 ECC Comparison and Correction
              5. 15.4.4.12.3.1.5 ECC Calculation Based on 8-Bit Word
              6. 15.4.4.12.3.1.6 ECC Calculation Based on 16-Bit Word
            2. 15.4.4.12.3.2 BCH Code
              1. 15.4.4.12.3.2.1 Requirements
              2. 15.4.4.12.3.2.2 Memory Mapping of BCH Codeword
                1. 15.4.4.12.3.2.2.1 Memory Mapping of Data Message
                2. 15.4.4.12.3.2.2.2 Memory-Mapping of the ECC
                3. 15.4.4.12.3.2.2.3 Wrapping Modes
                  1. 4.4.12.3.2.2.3.1  Manual Mode (0x0)
                  2. 4.4.12.3.2.2.3.2  Mode 0x1
                  3. 4.4.12.3.2.2.3.3  Mode 0xA (10)
                  4. 4.4.12.3.2.2.3.4  Mode 0x2
                  5. 4.4.12.3.2.2.3.5  Mode 0x3
                  6. 4.4.12.3.2.2.3.6  Mode 0x7
                  7. 4.4.12.3.2.2.3.7  Mode 0x8
                  8. 4.4.12.3.2.2.3.8  Mode 0x4
                  9. 4.4.12.3.2.2.3.9  Mode 0x9
                  10. 4.4.12.3.2.2.3.10 Mode 0x5
                  11. 4.4.12.3.2.2.3.11 Mode 0xB (11)
                  12. 4.4.12.3.2.2.3.12 Mode 0x6
              3. 15.4.4.12.3.2.3 Supported NAND Page Mappings and ECC Schemes
                1. 15.4.4.12.3.2.3.1 Per-Sector Spare Mappings
                2. 15.4.4.12.3.2.3.2 Pooled Spare Mapping
                3. 15.4.4.12.3.2.3.3 Per-Sector Spare Mapping, with ECC Separated at the End of the Page
          4. 15.4.4.12.4 Prefetch and Write-Posting Engine
            1. 15.4.4.12.4.1 General Facts About the Engine Configuration
            2. 15.4.4.12.4.2 Prefetch Mode
            3. 15.4.4.12.4.3 FIFO Control in Prefetch Mode
            4. 15.4.4.12.4.4 Write-Posting Mode
            5. 15.4.4.12.4.5 FIFO Control in Write-Posting Mode
            6. 15.4.4.12.4.6 Optimizing NAND Access Using the Prefetch and Write-Posting Engine
            7. 15.4.4.12.4.7 Interleaved Accesses Between Prefetch and Write-Posting Engine and Other Chip-Selects
      5. 15.4.5 GPMC Basic Programming Model
        1. 15.4.5.1 GPMC High-Level Programming Model Overview
        2. 15.4.5.2 GPMC Initialization
        3. 15.4.5.3 GPMC Configuration in NOR Mode
        4. 15.4.5.4 GPMC Configuration in NAND Mode
        5. 15.4.5.5 Set Memory Access
        6. 15.4.5.6 GPMC Timing Parameters
          1. 15.4.5.6.1 GPMC Timing Parameters Formulas
            1. 15.4.5.6.1.1 NAND Flash Interface Timing Parameters Formulas
            2. 15.4.5.6.1.2 Synchronous NOR Flash Timing Parameters Formulas
            3. 15.4.5.6.1.3 Asynchronous NOR Flash Timing Parameters Formulas
      6. 15.4.6 GPMC Use Cases and Tips
        1. 15.4.6.1 How to Set GPMC Timing Parameters for Typical Accesses
          1. 15.4.6.1.1 External Memory Attached to the GPMC Module
          2. 15.4.6.1.2 Typical GPMC Setup
            1. 15.4.6.1.2.1 GPMC Configuration for Synchronous Burst Read Access
            2. 15.4.6.1.2.2 GPMC Configuration for Asynchronous Read Access
            3. 15.4.6.1.2.3 GPMC Configuration for Asynchronous Single Write Access
        2. 15.4.6.2 How to Choose a Suitable Memory to Use With the GPMC
          1. 15.4.6.2.1 Supported Memories or Devices
            1. 15.4.6.2.1.1 Memory Pin Multiplexing
            2. 15.4.6.2.1.2 NAND Interface Protocol
            3. 15.4.6.2.1.3 NOR Interface Protocol
            4. 15.4.6.2.1.4 Other Technologies
            5. 15.4.6.2.1.5 Supported Protocols
          2. 15.4.6.2.2 GPMC Features and Settings
      7. 15.4.7 GPMC Register Manual
        1. 15.4.7.1 GPMC Register Summary
        2. 15.4.7.2 GPMC Register Descriptions
    5. 15.5 Error Location Module
      1. 15.5.1 Error Location Module Overview
      2. 15.5.2 ELM Integration
      3. 15.5.3 ELM Functional Description
        1. 15.5.3.1 ELM Software Reset
        2. 15.5.3.2 ELM Power Management
        3. 15.5.3.3 ELM Interrupt Requests
        4. 15.5.3.4 Processing Initialization
        5. 15.5.3.5 Processing Sequence
        6. 15.5.3.6 Processing Completion
      4. 15.5.4 ELM Basic Programming Model
        1. 15.5.4.1 ELM Low-Level Programming Model
          1. 15.5.4.1.1 Processing Initialization
          2. 15.5.4.1.2 Read Results
          3. 15.5.4.1.3 2142
        2. 15.5.4.2 Use Case: ELM Used in Continuous Mode
        3. 15.5.4.3 Use Case: ELM Used in Page Mode
      5. 15.5.5 ELM Register Manual
        1. 15.5.5.1 ELM Instance Summary
        2. 15.5.5.2 ELM Registers
          1. 15.5.5.2.1 ELM Register Summary
          2. 15.5.5.2.2 ELM Register Description
    6. 15.6 On-Chip Memory (OCM) Subsystem
      1. 15.6.1 OCM Subsystem Overview
      2. 15.6.2 OCM Subsystem Integration
      3. 15.6.3 OCM Subsystem Functional Desctiption
        1. 15.6.3.1  Block Diagram
        2. 15.6.3.2  Resets
        3. 15.6.3.3  Clock Management
        4. 15.6.3.4  Interrupt Requests
        5. 15.6.3.5  OCM Subsystem Memory Regions
        6. 15.6.3.6  OCM Controller Modes Of Operation
        7. 15.6.3.7  ECC Associated FIFOs
        8. 15.6.3.8  ECC Counters And Corrected Bit Distribution Register
        9. 15.6.3.9  ECC Support
        10. 15.6.3.10 Circular Buffer (CBUF) Support
        11. 15.6.3.11 CBUF Mode Error Handling
          1. 15.6.3.11.1 VBUF Address Not Mapped to a CBUF Memory Space
          2. 15.6.3.11.2 VBUF Access Not Starting At The Base Address
          3. 15.6.3.11.3 Illegal Address Change Between Two Same Type Accesses
          4. 15.6.3.11.4 Illegal Frame SIze (Short Frame Detection)
          5. 15.6.3.11.5 CBUF Overflow
          6. 15.6.3.11.6 CBUF Underflow
        12. 15.6.3.12 Status Reporting
      4. 15.6.4 OCM Subsystem Register Manual
        1. 15.6.4.1 OCM Subsystem Instance Summary
        2. 15.6.4.2 OCM Subsystem Registers
          1. 15.6.4.2.1 OCM Subsystem Register Summary
          2. 15.6.4.2.2 OCM Subsystem Register Description
  18. 16DMA Controllers
    1. 16.1 System DMA
      1. 16.1.1 DMA_SYSTEM Module Overview
      2. 16.1.2 DMA_SYSTEM Controller Environment
      3. 16.1.3 DMA_SYSTEM Module Integration
        1. 16.1.3.1 DMA Requests to the DMA_SYSTEM Controller
        2. 16.1.3.2 Mapping of DMA Requests to DMA_CROSSBAR Inputs
      4. 16.1.4 DMA_SYSTEM Functional Description
        1. 16.1.4.1  DMA_SYSTEM Controller Power Management
        2. 16.1.4.2  DMA_SYSTEM Controller Interrupt Requests
          1. 16.1.4.2.1 Interrupt Generation
        3. 16.1.4.3  Logical Channel Transfer Overview
        4. 16.1.4.4  FIFO Queue Memory Pool
        5. 16.1.4.5  Addressing Modes
        6. 16.1.4.6  Packed Accesses
        7. 16.1.4.7  Burst Transactions
        8. 16.1.4.8  Endianism Conversion
        9. 16.1.4.9  Transfer Synchronization
          1. 16.1.4.9.1 Software Synchronization
          2. 16.1.4.9.2 Hardware Synchronization
        10. 16.1.4.10 Thread Budget Allocation
        11. 16.1.4.11 FIFO Budget Allocation
        12. 16.1.4.12 Chained Logical Channel Transfers
        13. 16.1.4.13 Reprogramming an Active Channel
        14. 16.1.4.14 Packet Synchronization
        15. 16.1.4.15 Graphics Acceleration Support
        16. 16.1.4.16 Supervisor Modes
        17. 16.1.4.17 Posted and Nonposted Writes
        18. 16.1.4.18 Disabling a Channel During Transfer
        19. 16.1.4.19 FIFO Draining Mechanism
        20. 16.1.4.20 Linked List
          1. 16.1.4.20.1 Overview
          2. 16.1.4.20.2 Link-List Transfer Profile
          3. 16.1.4.20.3 Descriptors
            1. 16.1.4.20.3.1 Type 1
            2. 16.1.4.20.3.2 Type 2
            3. 16.1.4.20.3.3 Type 3
          4. 16.1.4.20.4 Linked-List Control and Monitoring
            1. 16.1.4.20.4.1 Transfer Mode Setting
            2. 16.1.4.20.4.2 Starting a Linked List
            3. 16.1.4.20.4.3 Monitoring a Linked-List Progression
            4. 16.1.4.20.4.4 Interrupt During Linked-List Execution
            5. 16.1.4.20.4.5 Pause a Linked List
            6. 16.1.4.20.4.6 Stop a Linked List (Abort or Drain)
              1. 16.1.4.20.4.6.1 Drain
              2. 16.1.4.20.4.6.2 Abort
            7. 16.1.4.20.4.7 Status Bit Behavior
            8. 16.1.4.20.4.8 Linked-List Channel Linking
      5. 16.1.5 DMA_SYSTEM Basic Programming Model
        1. 16.1.5.1 Setup Configuration
        2. 16.1.5.2 Software-Triggered (Nonsynchronized) Transfer
        3. 16.1.5.3 Hardware-Synchronized Transfer
        4. 16.1.5.4 Synchronized Transfer Monitoring Using CDAC
        5. 16.1.5.5 Concurrent Software and Hardware Synchronization
        6. 16.1.5.6 Chained Transfer
        7. 16.1.5.7 90-Degree Clockwise Image Rotation
        8. 16.1.5.8 Graphic Operations
        9. 16.1.5.9 Linked-List Programming Guidelines
      6. 16.1.6 DMA_SYSTEM Register Manual
        1. 16.1.6.1 DMA_SYSTEM Instance Summary
        2. 16.1.6.2 DMA_SYSTEM Registers
          1. 16.1.6.2.1 DMA_SYSTEM Register Summary
          2. 16.1.6.2.2 DMA_SYSTEM Register Description
    2. 16.2 Enhanced DMA
      1. 16.2.1 EDMA Module Overview
        1. 16.2.1.1 EDMA Features
        2. 16.2.1.2 2243
        3. 16.2.1.3 EDMA Controllers Configuration
      2. 16.2.2 EDMA Controller Environment
      3. 16.2.3 EDMA Controller Integration
        1. 16.2.3.1 EDMA Requests to the EDMA Controller
      4. 16.2.4 EDMA Controller Functional Description
        1. 16.2.4.1  Block Diagram
          1. 16.2.4.1.1 Third-Party Channel Controller
          2. 16.2.4.1.2 Third-Party Transfer Controller
        2. 16.2.4.2  Types of EDMA controller Transfers
          1. 16.2.4.2.1 A-Synchronized Transfers
          2. 16.2.4.2.2 AB-Synchronized Transfers
        3. 16.2.4.3  Parameter RAM (PaRAM)
          1. 16.2.4.3.1 PaRAM
          2. 16.2.4.3.2 EDMA Channel PaRAM Set Entry Fields
            1. 16.2.4.3.2.1  Channel Options Parameter (OPT)
            2. 16.2.4.3.2.2  Channel Source Address (SRC)
            3. 16.2.4.3.2.3  Channel Destination Address (DST)
            4. 16.2.4.3.2.4  Count for 1st Dimension (ACNT)
            5. 16.2.4.3.2.5  Count for 2nd Dimension (BCNT)
            6. 16.2.4.3.2.6  Count for 3rd Dimension (CCNT)
            7. 16.2.4.3.2.7  BCNT Reload (BCNTRLD)
            8. 16.2.4.3.2.8  Source B Index (SBIDX)
            9. 16.2.4.3.2.9  Destination B Index (DBIDX)
            10. 16.2.4.3.2.10 Source C Index (SCIDX)
            11. 16.2.4.3.2.11 Destination C Index (DCIDX)
            12. 16.2.4.3.2.12 Link Address (LINK)
          3. 16.2.4.3.3 Null PaRAM Set
          4. 16.2.4.3.4 Dummy PaRAM Set
          5. 16.2.4.3.5 Dummy Versus Null Transfer Comparison
          6. 16.2.4.3.6 Parameter Set Updates
          7. 16.2.4.3.7 Linking Transfers
          8. 16.2.4.3.8 Constant Addressing Mode Transfers/Alignment Issues
          9. 16.2.4.3.9 Element Size
        4. 16.2.4.4  Initiating a DMA Transfer
          1. 16.2.4.4.1 DMA Channel
            1. 16.2.4.4.1.1 Event-Triggered Transfer Request
            2. 16.2.4.4.1.2 Manually-Triggered Transfer Request
            3. 16.2.4.4.1.3 Chain-Triggered Transfer Request
          2. 16.2.4.4.2 QDMA Channels
            1. 16.2.4.4.2.1 Auto-triggered and Link-Triggered Transfer Request
          3. 16.2.4.4.3 Comparison Between DMA and QDMA Channels
        5. 16.2.4.5  Completion of a DMA Transfer
          1. 16.2.4.5.1 Normal Completion
          2. 16.2.4.5.2 Early Completion
          3. 16.2.4.5.3 Dummy or Null Completion
        6. 16.2.4.6  Event, Channel, and PaRAM Mapping
          1. 16.2.4.6.1 DMA Channel to PaRAM Mapping
          2. 16.2.4.6.2 QDMA Channel to PaRAM Mapping
        7. 16.2.4.7  EDMA Channel Controller Regions
          1. 16.2.4.7.1 Region Overview
          2. 16.2.4.7.2 Channel Controller Regions
            1. 16.2.4.7.2.1 Resource Pool Division Across Two Regions
          3. 16.2.4.7.3 Region Interrupts
        8. 16.2.4.8  Chaining EDMA Channels
        9. 16.2.4.9  EDMA Interrupts
          1. 16.2.4.9.1 Transfer Completion Interrupts
            1. 16.2.4.9.1.1 Enabling Transfer Completion Interrupts
            2. 16.2.4.9.1.2 Clearing Transfer Completion Interrupts
          2. 16.2.4.9.2 EDMA Interrupt Servicing
          3. 16.2.4.9.3 Interrupt Servicing
          4. 16.2.4.9.4 2304
          5. 16.2.4.9.5 Interrupt Servicing
          6. 16.2.4.9.6 Interrupt Evaluation Operations
          7. 16.2.4.9.7 Error Interrupts
          8. 16.2.4.9.8 2308
        10. 16.2.4.10 Memory Protection
          1. 16.2.4.10.1 Active Memory Protection
          2. 16.2.4.10.2 Proxy Memory Protection
        11. 16.2.4.11 Event Queue(s)
          1. 16.2.4.11.1 DMA/QDMA Channel to Event Queue Mapping
          2. 16.2.4.11.2 Queue RAM Debug Visibility
          3. 16.2.4.11.3 Queue Resource Tracking
          4. 16.2.4.11.4 Performance Considerations
        12. 16.2.4.12 EDMA Transfer Controller (EDMA_TPTC)
          1. 16.2.4.12.1 Architecture Details
            1. 16.2.4.12.1.1 Command Fragmentation
            2. 16.2.4.12.1.2 TR Pipelining
            3. 16.2.4.12.1.3 Command Fragmentation (DBS = 64)
            4. 16.2.4.12.1.4 Performance Tuning
          2. 16.2.4.12.2 Memory Protection
          3. 16.2.4.12.3 Error Generation
          4. 16.2.4.12.4 Debug Features
            1. 16.2.4.12.4.1 Destination FIFO Register Pointer
          5. 16.2.4.12.5 EDMA_TPTC Configuration
        13. 16.2.4.13 Event Dataflow
        14. 16.2.4.14 EDMA controller Prioritization
          1. 16.2.4.14.1 Channel Priority
          2. 16.2.4.14.2 Trigger Source Priority
          3. 16.2.4.14.3 Dequeue Priority
        15. 16.2.4.15 EDMA Power, Reset and Clock Management
          1. 16.2.4.15.1 Clock and Power Management
          2. 16.2.4.15.2 Reset Considerations
        16. 16.2.4.16 Emulation Considerations
      5. 16.2.5 EDMA Transfer Examples
        1. 16.2.5.1 Block Move Example
        2. 16.2.5.2 Subframe Extraction Example
        3. 16.2.5.3 Data Sorting Example
        4. 16.2.5.4 Peripheral Servicing Example
          1. 16.2.5.4.1 Non-bursting Peripherals
          2. 16.2.5.4.2 Bursting Peripherals
          3. 16.2.5.4.3 Continuous Operation
            1. 16.2.5.4.3.1 Receive Channel
            2. 16.2.5.4.3.2 Transmit Channel
            3. 16.2.5.4.3.3 2347
          4. 16.2.5.4.4 Ping-Pong Buffering
            1. 16.2.5.4.4.1 Synchronization with the CPU
          5. 16.2.5.4.5 Transfer Chaining Examples
            1. 16.2.5.4.5.1 Servicing Input/Output FIFOs with a Single Event
            2. 16.2.5.4.5.2 Breaking Up Large Transfers with Intermediate Chaining
        5. 16.2.5.5 Setting Up an EDMA Transfer
          1. 16.2.5.5.1 2354
      6. 16.2.6 EDMA Debug Checklist and Programming Tips
        1. 16.2.6.1 EDMA Debug Checklist
        2. 16.2.6.2 EDMA Programming Tips
      7. 16.2.7 EDMA Register Manual
        1. 16.2.7.1 EDMA Instance Summary
        2. 16.2.7.2 EDMA Registers
          1. 16.2.7.2.1 EDMA Register Summary
          2. 16.2.7.2.2 EDMA Register Description
            1. 16.2.7.2.2.1 EDMA_TPCC Register Description
            2. 16.2.7.2.2.2 EDMA_TPTC0 and EDMA_TPTC1 Register Description
  19. 17Interrupt Controllers
    1. 17.1 Interrupt Controllers Overview
    2. 17.2 Interrupt Controllers Environment
    3. 17.3 Interrupt Controllers Integration
      1. 17.3.1 Interrupt Requests to MPU_INTC
      2. 17.3.2 Interrupt Requests to DSP1_INTC
      3. 17.3.3 Interrupt Requests to IPU1_Cx_INTC
      4. 17.3.4 Interrupt Requests to IPU2_Cx_INTC
      5. 17.3.5 Interrupt Requests to PRUSS1_INTC
      6. 17.3.6 Interrupt Requests to PRUSS2_INTC
      7. 17.3.7 Mapping of Device Interrupts to IRQ_CROSSBAR Inputs
    4. 17.4 Interrupt Controllers Functional Description
  20. 18Control Module
    1. 18.1 Control Module Overview
    2. 18.2 Control Module Environment
    3. 18.3 Control Module Integration
    4. 18.4 Control Module Functional Description
      1. 18.4.1 Control Module Clock Configuration
      2. 18.4.2 Control Module Resets
      3. 18.4.3 Control Module Power Management
        1. 18.4.3.1 Power Management Protocols
      4. 18.4.4 Hardware Requests
      5. 18.4.5 Control Module Initialization
      6. 18.4.6 Functional Description Of The Various Register Types In CTRL_MODULE_CORE Submodule
        1. 18.4.6.1  Pad Configuration
          1. 18.4.6.1.1 Pad Configuration Registers
            1. 18.4.6.1.1.1 Permanent PU/PD disabling (SR 2.x only)
          2. 18.4.6.1.2 Pull Selection
          3. 18.4.6.1.3 Pad multiplexing
          4. 18.4.6.1.4 IOSETs
          5. 18.4.6.1.5 Virtual IO Timing Modes
          6. 18.4.6.1.6 Manual IO Timing Modes
          7. 18.4.6.1.7 Isolation Requirements
          8. 18.4.6.1.8 IO Delay Recalibration
        2. 18.4.6.2  Thermal Management Related Registers
          1. 18.4.6.2.1 Temperature Sensors Control Registers
          2. 18.4.6.2.2 Registers For The Thermal Alert Comparators
          3. 18.4.6.2.3 Thermal Shutdown Comparators
          4. 18.4.6.2.4 Temperature Timestamp Registers
          5. 18.4.6.2.5 Other Thermal Management Related Registers
          6. 18.4.6.2.6 Summary Of The Thermal Management Related Registers
          7. 18.4.6.2.7 ADC Values Versus Temperature
        3. 18.4.6.3  PBIAS Cell And MMC1 I/O Cells Control Registers
        4. 18.4.6.4  IRQ_CROSSBAR Module Functional Description
        5. 18.4.6.5  DMA_CROSSBAR Module Functional Description
        6. 18.4.6.6  SDRAM Initiator Priority Registers
        7. 18.4.6.7  L3_MAIN Initiator Priority Registers
        8. 18.4.6.8  Memory Region Lock Registers
        9. 18.4.6.9  NMI Mapping To Respective Cores
        10. 18.4.6.10 Software Controls for the DDR3 I/O Cells
        11. 18.4.6.11 Reference Voltage for the Device DDR3 Receivers
        12. 18.4.6.12 AVS Class 0 Associated Registers
        13. 18.4.6.13 ABB Associated Registers
        14. 18.4.6.14 Registers For Other Miscellaneous Functions
          1. 18.4.6.14.1 System Boot Status Settings
          2. 18.4.6.14.2 Force MPU Write Nonposted Transactions
          3. 18.4.6.14.3 Firewall Error Status Registers
          4. 18.4.6.14.4 Settings Related To Different Peripheral Modules
      7. 18.4.7 Functional Description Of The Various Register Types In CTRL_MODULE_WKUP Submodule
        1. 18.4.7.1 Registers For Basic EMIF configuration
    5. 18.5 Control Module Register Manual
    6. 18.6 IODELAYCONFIG Module Integration
    7. 18.7 IODELAYCONFIG Module Register Manual
  21. 19Mailbox
    1. 19.1 Mailbox Overview
    2. 19.2 Mailbox Integration
      1. 19.2.1 System MAILBOX Integration
      2. 19.2.2 IVA Mailbox Integration
    3. 19.3 Mailbox Functional Description
      1. 19.3.1 Mailbox Block Diagram
        1. 19.3.1.1 2435
      2. 19.3.2 Mailbox Software Reset
      3. 19.3.3 Mailbox Power Management
      4. 19.3.4 Mailbox Interrupt Requests
      5. 19.3.5 Mailbox Assignment
        1. 19.3.5.1 Description
      6. 19.3.6 Sending and Receiving Messages
        1. 19.3.6.1 Description
      7. 19.3.7 16-Bit Register Access
        1. 19.3.7.1 Description
      8. 19.3.8 Example of Communication
    4. 19.4 Mailbox Programming Guide
      1. 19.4.1 Mailbox Low-level Programming Models
        1. 19.4.1.1 Global Initialization
          1. 19.4.1.1.1 Surrounding Modules Global Initialization
          2. 19.4.1.1.2 Mailbox Global Initialization
            1. 19.4.1.1.2.1 Main Sequence - Mailbox Global Initialization
        2. 19.4.1.2 Mailbox Operational Modes Configuration
          1. 19.4.1.2.1 Mailbox Processing modes
            1. 19.4.1.2.1.1 Main Sequence - Sending a Message (Polling Method)
            2. 19.4.1.2.1.2 Main Sequence - Sending a Message (Interrupt Method)
            3. 19.4.1.2.1.3 Main Sequence - Receiving a Message (Polling Method)
            4. 19.4.1.2.1.4 Main Sequence - Receiving a Message (Interrupt Method)
        3. 19.4.1.3 Mailbox Events Servicing
          1. 19.4.1.3.1 Events Servicing in Sending Mode
          2. 19.4.1.3.2 Events Servicing in Receiving Mode
    5. 19.5 Mailbox Register Manual
      1. 19.5.1 Mailbox Instance Summary
      2. 19.5.2 Mailbox Registers
        1. 19.5.2.1 Mailbox Register Summary
        2. 19.5.2.2 Mailbox Register Description
  22. 20Memory Management Units
    1. 20.1 MMU Overview
    2. 20.2 MMU Integration
    3. 20.3 MMU Functional Description
      1. 20.3.1 MMU Block Diagram
        1. 20.3.1.1 MMU Address Translation Process
        2. 20.3.1.2 Translation Tables
          1. 20.3.1.2.1 Translation Table Hierarchy
          2. 20.3.1.2.2 First-Level Translation Table
            1. 20.3.1.2.2.1 First-Level Descriptor Format
            2. 20.3.1.2.2.2 First-Level Page Descriptor Format
            3. 20.3.1.2.2.3 First-Level Section Descriptor Format
            4. 20.3.1.2.2.4 Section Translation Summary
            5. 20.3.1.2.2.5 Supersection Translation Summary
          3. 20.3.1.2.3 Two-Level Translation
            1. 20.3.1.2.3.1 Second-Level Descriptor Format
            2. 20.3.1.2.3.2 Small Page Translation Summary
            3. 20.3.1.2.3.3 Large Page Translation Summary
        3. 20.3.1.3 Translation Lookaside Buffer
          1. 20.3.1.3.1 TLB Entry Format
        4. 20.3.1.4 No Translation (Bypass) Regions
      2. 20.3.2 MMU Software Reset
      3. 20.3.3 MMU Power Management
      4. 20.3.4 MMU Interrupt Requests
      5. 20.3.5 MMU Error Handling
    4. 20.4 MMU Low-level Programming Models
      1. 20.4.1 Global Initialization
        1. 20.4.1.1 Surrounding Modules Global Initialization
        2. 20.4.1.2 MMU Global Initialization
          1. 20.4.1.2.1 Main Sequence - MMU Global Initialization
          2. 20.4.1.2.2 Subsequence - Configure a TLB entry
        3. 20.4.1.3 Operational Modes Configuration
          1. 20.4.1.3.1 Main Sequence - Writing TLB Entries Statically
          2. 20.4.1.3.2 Main Sequence - Protecting TLB Entries
          3. 20.4.1.3.3 Main Sequence - Deleting TLB Entries
          4. 20.4.1.3.4 Main Sequence - Read TLB Entries
    5. 20.5 MMU Register Manual
      1. 20.5.1 MMU Instance Summary
      2. 20.5.2 MMU Registers
        1. 20.5.2.1 MMU Register Summary
        2. 20.5.2.2 MMU Register Description
  23. 21Spinlock
    1. 21.1 Spinlock Overview
    2. 21.2 Spinlock Integration
    3. 21.3 Spinlock Functional Description
      1. 21.3.1 Spinlock Software Reset
      2. 21.3.2 Spinlock Power Management
      3. 21.3.3 About Spinlocks
      4. 21.3.4 Spinlock Functional Operation
    4. 21.4 Spinlock Programming Guide
      1. 21.4.1 Spinlock Low-level Programming Models
        1. 21.4.1.1 Surrounding Modules Global Initialization
        2. 21.4.1.2 Basic Spinlock Operations
          1. 21.4.1.2.1 Spinlocks Clearing After a System Bug Recovery
          2. 21.4.1.2.2 Take and Release Spinlock
    5. 21.5 Spinlock Register Manual
      1. 21.5.1 Spinlock Instance Summary
      2. 21.5.2 Spinlock Registers
        1. 21.5.2.1 Spinlock Register Summary
        2. 21.5.2.2 Spinlock Register Description
  24. 22Timers
    1. 22.1 Timers Overview
    2. 22.2 General-Purpose Timers
      1. 22.2.1 General-Purpose Timers Overview
        1. 22.2.1.1 GP Timer Features
      2. 22.2.2 GP Timer Environment
        1. 22.2.2.1 GP Timer External System Interface
      3. 22.2.3 GP Timer Integration
      4. 22.2.4 GP Timer Functional Description
        1. 22.2.4.1  GP Timer Block Diagram
        2. 22.2.4.2  TIMER1, TIMER2 and TIMER10 Power Management
          1. 22.2.4.2.1 Wake-Up Capability
        3. 22.2.4.3  Power Management of Other GP Timers
          1. 22.2.4.3.1 Wake-Up Capability
        4. 22.2.4.4  Software Reset
        5. 22.2.4.5  GP Timer Interrupts
        6. 22.2.4.6  Timer Mode Functionality
          1. 22.2.4.6.1 1-ms Tick Generation (Only TIMER1, TIMER2 and TIMER10)
        7. 22.2.4.7  Capture Mode Functionality
        8. 22.2.4.8  Compare Mode Functionality
        9. 22.2.4.9  Prescaler Functionality
        10. 22.2.4.10 Pulse-Width Modulation
        11. 22.2.4.11 Timer Counting Rate
        12. 22.2.4.12 Timer Under Emulation
        13. 22.2.4.13 Accessing GP Timer Registers
          1. 22.2.4.13.1 Writing to Timer Registers
            1. 22.2.4.13.1.1 Write Posting Synchronization Mode
            2. 22.2.4.13.1.2 Write Nonposting Synchronization Mode
          2. 22.2.4.13.2 Reading From Timer Counter Registers
            1. 22.2.4.13.2.1 Read Posted
            2. 22.2.4.13.2.2 Read Non-Posted
        14. 22.2.4.14 Posted Mode Selection
      5. 22.2.5 GP Timer Low-Level Programming Models
        1. 22.2.5.1 Global Initialization
          1. 22.2.5.1.1 Global Initialization of Surrounding Modules
          2. 22.2.5.1.2 GP Timer Module Global Initialization
            1. 22.2.5.1.2.1 Main Sequence – GP Timer Module Global Initialization
        2. 22.2.5.2 Operational Mode Configuration
          1. 22.2.5.2.1 GP Timer Mode
            1. 22.2.5.2.1.1 Main Sequence – GP Timer Mode Configuration
          2. 22.2.5.2.2 GP Timer Compare Mode
            1. 22.2.5.2.2.1 Main Sequence – GP Timer Compare Mode Configuration
          3. 22.2.5.2.3 GP Timer Capture Mode
            1. 22.2.5.2.3.1 Main Sequence – GP Timer Capture Mode Configuration
            2. 22.2.5.2.3.2 Subsequence – Initialize Capture Mode
            3. 22.2.5.2.3.3 Subsequence – Detect Event
          4. 22.2.5.2.4 GP Timer PWM Mode
            1. 22.2.5.2.4.1 Main Sequence – GP Timer PWM Mode Configuration
      6. 22.2.6 GP Timer Register Manual
        1. 22.2.6.1 GP Timer Instance Summary
        2. 22.2.6.2 GP Timer Registers
          1. 22.2.6.2.1 GP Timer Register Summary
          2. 22.2.6.2.2 GP Timer Register Description
          3. 22.2.6.2.3 TIMER1, TIMER2, and TIMER10 Register Description
    3. 22.3 32-kHz Synchronized Timer (COUNTER_32K)
      1. 22.3.1 32-kHz Synchronized Timer Overview
        1. 22.3.1.1 32-kHz Synchronized Timer Features
      2. 22.3.2 32-kHz Synchronized Timer Integration
      3. 22.3.3 32-kHz Synchronized Timer Functional Description
        1. 22.3.3.1 Reading the 32-kHz Synchronized Timer
      4. 22.3.4 COUNTER_32K Timer Register Manual
        1. 22.3.4.1 COUNTER_32K Timer Register Mapping Summary
        2. 22.3.4.2 COUNTER_32K Timer Register Description
    4. 22.4 Watchdog Timer
      1. 22.4.1 Watchdog Timer Overview
        1. 22.4.1.1 Watchdog Timer Features
      2. 22.4.2 Watchdog Timer Integration
      3. 22.4.3 Watchdog Timer Functional Description
        1. 22.4.3.1  Power Management
          1. 22.4.3.1.1 Wake-Up Capability
        2. 22.4.3.2  Interrupts
        3. 22.4.3.3  General Watchdog Timer Operation
        4. 22.4.3.4  Reset Context
        5. 22.4.3.5  Overflow/Reset Generation
        6. 22.4.3.6  Prescaler Value/Timer Reset Frequency
        7. 22.4.3.7  Triggering a Timer Reload
        8. 22.4.3.8  Start/Stop Sequence for Watchdog Timer (Using the WSPR Register)
        9. 22.4.3.9  Modifying Timer Count/Load Values and Prescaler Setting
        10. 22.4.3.10 Watchdog Counter Register Access Restriction (WCRR)
        11. 22.4.3.11 Watchdog Timer Interrupt Generation
        12. 22.4.3.12 Watchdog Timer Under Emulation
        13. 22.4.3.13 Accessing Watchdog Timer Registers
      4. 22.4.4 Watchdog Timer Low-Level Programming Model
        1. 22.4.4.1 Global Initialization
          1. 22.4.4.1.1 Surrounding Modules Global Initialization
          2. 22.4.4.1.2 Watchdog Timer Module Global Initialization
            1. 22.4.4.1.2.1 Main Sequence – Watchdog Timer Module Global Initialization
        2. 22.4.4.2 Operational Mode Configuration
          1. 22.4.4.2.1 Watchdog Timer Basic Configuration
            1. 22.4.4.2.1.1 Main Sequence – Watchdog Timer Basic Configuration
            2. 22.4.4.2.1.2 Subsequence – Disable the Watchdog Timer
            3. 22.4.4.2.1.3 Subsequence – Enable the Watchdog Timer
      5. 22.4.5 Watchdog Timer Register Manual
        1. 22.4.5.1 Watchdog Timer Instance Summary
        2. 22.4.5.2 Watchdog Timer Registers
          1. 22.4.5.2.1 Watchdog Timer Register Summary
          2. 22.4.5.2.2 2622
          3. 22.4.5.2.3 Watchdog Timer Register Description
  25. 23Real-Time Clock (RTC)
    1. 23.1 RTC Overview
      1. 23.1.1 RTC Features
    2. 23.2 RTC Environment
      1. 23.2.1 RTC External Interface
    3. 23.3 RTC Integration
    4. 23.4 RTC Functional Description
      1. 23.4.1 Clock Source
      2. 23.4.2 Interrupt Support
        1. 23.4.2.1 CPU Interrupts
        2. 23.4.2.2 Interrupt Description
          1. 23.4.2.2.1 Timer Interrupt (timer_intr)
          2. 23.4.2.2.2 Alarm Interrupt (alarm_intr)
      3. 23.4.3 RTC Programming/Usage Guide
        1. 23.4.3.1 Time/Calendar Data Format
        2. 23.4.3.2 Register Access
        3. 23.4.3.3 Register Spurious Write Protection
        4. 23.4.3.4 Reading the Timer/Calendar (TC) Registers
          1. 23.4.3.4.1 Rounding Seconds
        5. 23.4.3.5 Modifying the TC Registers
          1. 23.4.3.5.1 General Registers
        6. 23.4.3.6 Crystal Compensation
      4. 23.4.4 Scratch Registers
      5. 23.4.5 Debouncing
      6. 23.4.6 Power Management
        1. 23.4.6.1 Device-Level Power Management
        2. 23.4.6.2 Subsystem-Level Power Management — PMIC Mode
    5. 23.5 RTC Low-Level Programming Guide
      1. 23.5.1 Global Initialization
        1. 23.5.1.1 Surrounding Modules Global Initialization
        2. 23.5.1.2 RTC Module Global Initialization
          1. 23.5.1.2.1 Main Sequence – RTC Module Global Initialization
    6. 23.6 RTC Register Manual
      1. 23.6.1 RTC Instance Summary
      2. 23.6.2 RTC_SS Registers
        1. 23.6.2.1 RTC_SS Register Summary
        2. 23.6.2.2 RTC_SS Register Description
  26. 24Serial Communication Interfaces
    1. 24.1  Multimaster High-Speed I2C Controller
      1. 24.1.1 HS I2C Overview
      2. 24.1.2 HS I2C Environment
        1. 24.1.2.1 HS I2C Typical Application
          1. 24.1.2.1.1 HS I2C Pins for Typical Connections in I2C Mode
          2. 24.1.2.1.2 HS I2C Interface Typical Connections
          3. 24.1.2.1.3 2668
        2. 24.1.2.2 HS I2C Typical Connection Protocol and Data Format
          1. 24.1.2.2.1  HS I2C Serial Data Format
          2. 24.1.2.2.2  HS I2C Data Validity
          3. 24.1.2.2.3  HS I2C Start and Stop Conditions
          4. 24.1.2.2.4  HS I2C Addressing
            1. 24.1.2.2.4.1 Data Transfer Formats in F/S Mode
            2. 24.1.2.2.4.2 Data Transfer Format in HS Mode
          5. 24.1.2.2.5  HS I2C Master Transmitter
          6. 24.1.2.2.6  HS I2C Master Receiver
          7. 24.1.2.2.7  HS I2C Slave Transmitter
          8. 24.1.2.2.8  HS I2C Slave Receiver
          9. 24.1.2.2.9  HS I2C Bus Arbitration
          10. 24.1.2.2.10 HS I2C Clock Generation and Synchronization
      3. 24.1.3 HS I2C Integration
      4. 24.1.4 HS I2C Functional Description
        1. 24.1.4.1  HS I2C Block Diagram
        2. 24.1.4.2  HS I2C Clocks
          1. 24.1.4.2.1 HS I2C Clocking
          2. 24.1.4.2.2 HS I2C Automatic Blocking of the I2C Clock Feature
        3. 24.1.4.3  HS I2C Software Reset
        4. 24.1.4.4  HS I2C Power Management
        5. 24.1.4.5  HS I2C Interrupt Requests
        6. 24.1.4.6  HS I2C DMA Requests
        7. 24.1.4.7  HS I2C Programmable Multislave Channel Feature
        8. 24.1.4.8  HS I2C FIFO Management
          1. 24.1.4.8.1 HS I2C FIFO Interrupt Mode
          2. 24.1.4.8.2 HS I2C FIFO Polling Mode
          3. 24.1.4.8.3 HS I2C FIFO DMA Mode
          4. 24.1.4.8.4 HS I2C Draining Feature
        9. 24.1.4.9  HS I2C Noise Filter
        10. 24.1.4.10 HS I2C System Test Mode
      5. 24.1.5 HS I2C Programming Guide
        1. 24.1.5.1 HS I2C Low-Level Programming Models
          1. 24.1.5.1.1 HS I2C Programming Model
            1. 24.1.5.1.1.1 Main Program
              1. 24.1.5.1.1.1.1 Configure the Module Before Enabling the I2C Controller
              2. 24.1.5.1.1.1.2 Initialize the I2C Controller
              3. 24.1.5.1.1.1.3 Configure Slave Address and the Data Control Register
              4. 24.1.5.1.1.1.4 Initiate a Transfer
              5. 24.1.5.1.1.1.5 Receive Data
              6. 24.1.5.1.1.1.6 Transmit Data
            2. 24.1.5.1.1.2 Interrupt Subroutine Sequence
            3. 24.1.5.1.1.3 Programming Flow-Diagrams
      6. 24.1.6 HS I2C Register Manual
        1. 24.1.6.1 HS I2C Instance Summary
        2. 24.1.6.2 HS I2C Registers
          1. 24.1.6.2.1 HS I2C Register Summary
          2. 24.1.6.2.2 HS I2C Register Description
    2. 24.2  HDQ/1-Wire
      1. 24.2.1 HDQ1W Overview
      2. 24.2.2 HDQ1W Environment
        1. 24.2.2.1 HDQ1W Functional Modes
        2. 24.2.2.2 HDQ and 1-Wire (SDQ) Protocols
          1. 24.2.2.2.1 HDQ Protocol Initialization (Default)
          2. 24.2.2.2.2 1-Wire (SDQ) Protocol Initialization
          3. 24.2.2.2.3 Communication Sequence (HDQ and 1-Wire Protocols)
      3. 24.2.3 HDQ1W Integration
      4. 24.2.4 HDQ1W Functional Description
        1. 24.2.4.1 HDQ1W Block Diagram
        2. 24.2.4.2 HDQ1W Clocking Configuration
          1. 24.2.4.2.1 HDQ1W Clocks
        3. 24.2.4.3 HDQ1W Hardware and Software Reset
        4. 24.2.4.4 HDQ1W Power Management
          1. 24.2.4.4.1 Auto-Idle Mode
          2. 24.2.4.4.2 Power-Down Mode
          3. 24.2.4.4.3 2734
        5. 24.2.4.5 HDQ Interrupt Requests
        6. 24.2.4.6 HDQ Mode (Default)
          1. 24.2.4.6.1 HDQ Mode Features
          2. 24.2.4.6.2 Description
          3. 24.2.4.6.3 Single-Bit Mode
          4. 24.2.4.6.4 Interrupt Conditions
        7. 24.2.4.7 1-Wire Mode
          1. 24.2.4.7.1 1-Wire Mode Features
          2. 24.2.4.7.2 Description
          3. 24.2.4.7.3 1-Wire Single-Bit Mode Operation
          4. 24.2.4.7.4 Interrupt Conditions
          5. 24.2.4.7.5 Status Flags
        8. 24.2.4.8 BITFSM Delay
      5. 24.2.5 HDQ1W Low-Level Programming Model
        1. 24.2.5.1 Global Initialization
          1. 24.2.5.1.1 Surrounding Modules Global Initialization
          2. 24.2.5.1.2 HDQ1W Module Global Initialization
        2. 24.2.5.2 HDQ Operational Modes Configuration
          1. 24.2.5.2.1 Main Sequence - HDQ Write Operation Mode
          2. 24.2.5.2.2 Main Sequence - HDQ Read Operation Mode
            1. 24.2.5.2.2.1 Sub-sequence - Initialize HDQ Slave
        3. 24.2.5.3 1-Wire Operational Modes Configuration
          1. 24.2.5.3.1 Main Sequence - 1-Wire Write Operation Mode
          2. 24.2.5.3.2 Main Sequence - 1-Wire Read Operation Mode
          3. 24.2.5.3.3 Sub-sequence - Initialize 1-Wire Slave
      6. 24.2.6 HDQ1W Register Manual
        1. 24.2.6.1 HDQ1W Instance Summary
        2. 24.2.6.2 HDQ1W Registers
          1. 24.2.6.2.1 HDQ1W Register Summary
          2. 24.2.6.2.2 HDQ1W Register Description
    3. 24.3  UART/IrDA/CIR
      1. 24.3.1 UART/IrDA/CIR Overview
        1. 24.3.1.1 UART Features
        2. 24.3.1.2 IrDA Features
        3. 24.3.1.3 CIR Features
      2. 24.3.2 UART/IrDA/CIR Environment
        1. 24.3.2.1 UART Interface
          1. 24.3.2.1.1 System Using UART Communication With Hardware Handshake
          2. 24.3.2.1.2 UART Interface Description
          3. 24.3.2.1.3 UART Protocol and Data Format
        2. 24.3.2.2 IrDA Functional Interfaces
          1. 24.3.2.2.1 System Using IrDA Communication Protocol
          2. 24.3.2.2.2 IrDA Interface Description
          3. 24.3.2.2.3 IrDA Protocol and Data Format
            1. 24.3.2.2.3.1 SIR Mode
              1. 24.3.2.2.3.1.1 Frame Format
              2. 24.3.2.2.3.1.2 Asynchronous Transparency
              3. 24.3.2.2.3.1.3 Abort Sequence
              4. 24.3.2.2.3.1.4 Pulse Shaping
              5. 24.3.2.2.3.1.5 Encoder
              6. 24.3.2.2.3.1.6 Decoder
              7. 24.3.2.2.3.1.7 IR Address Checking
            2. 24.3.2.2.3.2 SIR Free-Format Mode
            3. 24.3.2.2.3.3 MIR Mode
              1. 24.3.2.2.3.3.1 MIR Encoder/Decoder
              2. 24.3.2.2.3.3.2 SIP Generation
            4. 24.3.2.2.3.4 FIR Mode
        3. 24.3.2.3 CIR Functional Interfaces
          1. 24.3.2.3.1 System Using CIR Communication Protocol With Remote Control
          2. 24.3.2.3.2 CIR Interface Description
          3. 24.3.2.3.3 CIR Protocol and Data Format
            1. 24.3.2.3.3.1 Carrier Modulation
            2. 24.3.2.3.3.2 Pulse Duty Cycle
            3. 24.3.2.3.3.3 Consumer IR Encoding/Decoding
      3. 24.3.3 UART/IrDA/CIR Integration
        1. 24.3.3.1 2800
      4. 24.3.4 UART/IrDA/CIR Functional Description
        1. 24.3.4.1 Block Diagram
        2. 24.3.4.2 Clock Configuration
        3. 24.3.4.3 Software Reset
        4. 24.3.4.4 Power Management
          1. 24.3.4.4.1 UART Mode Power Management
            1. 24.3.4.4.1.1 Module Power Saving
            2. 24.3.4.4.1.2 System Power Saving
          2. 24.3.4.4.2 IrDA Mode Power Management (UART3 Only)
            1. 24.3.4.4.2.1 Module Power Saving
            2. 24.3.4.4.2.2 System Power Saving
          3. 24.3.4.4.3 CIR Mode Power Management (UART3 Only)
            1. 24.3.4.4.3.1 Module Power Saving
            2. 24.3.4.4.3.2 System Power Saving
          4. 24.3.4.4.4 Local Power Management
        5. 24.3.4.5 Interrupt Requests
          1. 24.3.4.5.1 UART Mode Interrupt Management
            1. 24.3.4.5.1.1 UART Interrupts
            2. 24.3.4.5.1.2 Wake-Up Interrupt
          2. 24.3.4.5.2 IrDA Mode Interrupt Management
            1. 24.3.4.5.2.1 IrDA Interrupts
            2. 24.3.4.5.2.2 Wake-Up Interrupts
          3. 24.3.4.5.3 CIR Mode Interrupt Management
            1. 24.3.4.5.3.1 CIR Interrupts
            2. 24.3.4.5.3.2 Wake-Up Interrupts
        6. 24.3.4.6 FIFO Management
          1. 24.3.4.6.1 FIFO Trigger
            1. 24.3.4.6.1.1 Transmit FIFO Trigger
            2. 24.3.4.6.1.2 Receive FIFO Trigger
          2. 24.3.4.6.2 FIFO Interrupt Mode
          3. 24.3.4.6.3 FIFO Polled Mode Operation
          4. 24.3.4.6.4 FIFO DMA Mode Operation
            1. 24.3.4.6.4.1 DMA sequence to disable TX DMA
            2. 24.3.4.6.4.2 DMA Transfers (DMA Mode 1, 2, or 3)
            3. 24.3.4.6.4.3 DMA Transmission
            4. 24.3.4.6.4.4 DMA Reception
        7. 24.3.4.7 Mode Selection
          1. 24.3.4.7.1 Register Access Modes
            1. 24.3.4.7.1.1 Operational Mode and Configuration Modes
            2. 24.3.4.7.1.2 Register Access Submode
            3. 24.3.4.7.1.3 Registers Available for the Register Access Modes
          2. 24.3.4.7.2 UART/IrDA (SIR, MIR, FIR)/CIR Mode Selection
            1. 24.3.4.7.2.1 Registers Available for the UART Function
            2. 24.3.4.7.2.2 Registers Available for the IrDA Function (UART3 Only)
            3. 24.3.4.7.2.3 Registers Available for the CIR Function (UART3 Only)
        8. 24.3.4.8 Protocol Formatting
          1. 24.3.4.8.1 UART Mode
            1. 24.3.4.8.1.1 UART Clock Generation: Baud Rate Generation
            2. 24.3.4.8.1.2 Choosing the Appropriate Divisor Value
            3. 24.3.4.8.1.3 UART Data Formatting
              1. 24.3.4.8.1.3.1 Frame Formatting
              2. 24.3.4.8.1.3.2 Hardware Flow Control
              3. 24.3.4.8.1.3.3 Software Flow Control
                1. 24.3.4.8.1.3.3.1 Receive (RX)
                2. 24.3.4.8.1.3.3.2 Transmit (TX)
              4. 24.3.4.8.1.3.4 Autobauding Modes
              5. 24.3.4.8.1.3.5 Error Detection
              6. 24.3.4.8.1.3.6 Overrun During Receive
              7. 24.3.4.8.1.3.7 Time-Out and Break Conditions
                1. 24.3.4.8.1.3.7.1 Time-Out Counter
                2. 24.3.4.8.1.3.7.2 Break Condition
          2. 24.3.4.8.2 IrDA Mode (UART3 Only)
            1. 24.3.4.8.2.1 IrDA Clock Generation: Baud Generator
            2. 24.3.4.8.2.2 Choosing the Appropriate Divisor Value
            3. 24.3.4.8.2.3 IrDA Data Formatting
              1. 24.3.4.8.2.3.1 IR RX Polarity Control
              2. 24.3.4.8.2.3.2 IrDA Reception Control
              3. 24.3.4.8.2.3.3 IR Address Checking
              4. 24.3.4.8.2.3.4 Frame Closing
              5. 24.3.4.8.2.3.5 Store and Controlled Transmission
              6. 24.3.4.8.2.3.6 Error Detection
              7. 24.3.4.8.2.3.7 Underrun During Transmission
              8. 24.3.4.8.2.3.8 Overrun During Receive
              9. 24.3.4.8.2.3.9 Status FIFO
            4. 24.3.4.8.2.4 SIR Mode Data Formatting
              1. 24.3.4.8.2.4.1 Abort Sequence
              2. 24.3.4.8.2.4.2 Pulse Shaping
              3. 24.3.4.8.2.4.3 SIR Free Format Programming
            5. 24.3.4.8.2.5 MIR and FIR Mode Data Formatting
          3. 24.3.4.8.3 CIR Mode (UART3 Only)
            1. 24.3.4.8.3.1 CIR Mode Clock Generation
            2. 24.3.4.8.3.2 CIR Data Formatting
              1. 24.3.4.8.3.2.1 IR RX Polarity Control
              2. 24.3.4.8.3.2.2 CIR Transmission
      5. 24.3.5 UART/IrDA/CIR Basic Programming Model
        1. 24.3.5.1 Global Initialization
          1. 24.3.5.1.1 Surrounding Modules Global Initialization
          2. 24.3.5.1.2 UART/IrDA/CIR Module Global Initialization
        2. 24.3.5.2 Mode selection
        3. 24.3.5.3 Submode selection
        4. 24.3.5.4 Load FIFO trigger and DMA mode settings
          1. 24.3.5.4.1 DMA mode Settings
          2. 24.3.5.4.2 FIFO Trigger Settings
        5. 24.3.5.5 Protocol, Baud rate and interrupt settings
          1. 24.3.5.5.1 Baud rate settings
          2. 24.3.5.5.2 Interrupt settings
          3. 24.3.5.5.3 Protocol settings
          4. 24.3.5.5.4 UART/IrDA(SIR/MIR/FIR)/CIR
        6. 24.3.5.6 Hardware and Software Flow Control Configuration
          1. 24.3.5.6.1 Hardware Flow Control Configuration
          2. 24.3.5.6.2 Software Flow Control Configuration
        7. 24.3.5.7 IrDA Programming Model (UART3 Only)
          1. 24.3.5.7.1 SIR mode
            1. 24.3.5.7.1.1 Receive
            2. 24.3.5.7.1.2 Transmit
          2. 24.3.5.7.2 MIR mode
            1. 24.3.5.7.2.1 Receive
            2. 24.3.5.7.2.2 Transmit
          3. 24.3.5.7.3 FIR mode
            1. 24.3.5.7.3.1 Receive
            2. 24.3.5.7.3.2 Transmit
      6. 24.3.6 UART/IrDA/CIR Register Manual
        1. 24.3.6.1 UART/IrDA/CIR Instance Summary
        2. 24.3.6.2 UART/IrDA/CIR Registers
          1. 24.3.6.2.1 UART/IrDA/CIR Register Summary
          2. 24.3.6.2.2 UART/IrDA/CIR Register Description
    4. 24.4  Multichannel Serial Peripheral Interface
      1. 24.4.1 McSPI Overview
      2. 24.4.2 McSPI Environment
        1. 24.4.2.1 Basic McSPI Pins for Master Mode
        2. 24.4.2.2 Basic McSPI Pins for Slave Mode
        3. 24.4.2.3 Multichannel SPI Protocol and Data Format
          1. 24.4.2.3.1 Transfer Format
        4. 24.4.2.4 SPI in Master Mode
        5. 24.4.2.5 SPI in Slave Mode
      3. 24.4.3 McSPI Integration
      4. 24.4.4 McSPI Functional Description
        1. 24.4.4.1 McSPI Block Diagram
        2. 24.4.4.2 Reset
        3. 24.4.4.3 Master Mode
          1. 24.4.4.3.1 Master Mode Features
          2. 24.4.4.3.2 Master Transmit-and-Receive Mode (Full Duplex)
          3. 24.4.4.3.3 Master Transmit-Only Mode (Half Duplex)
          4. 24.4.4.3.4 Master Receive-Only Mode (Half Duplex)
          5. 24.4.4.3.5 Single-Channel Master Mode
            1. 24.4.4.3.5.1 Programming Tips When Switching to Another Channel
            2. 24.4.4.3.5.2 Force SPIEN[x] Mode
            3. 24.4.4.3.5.3 Turbo Mode
          6. 24.4.4.3.6 Start-Bit Mode
          7. 24.4.4.3.7 Chip-Select Timing Control
          8. 24.4.4.3.8 Programmable SPI Clock
            1. 24.4.4.3.8.1 Clock Ratio Granularity
        4. 24.4.4.4 Slave Mode
          1. 24.4.4.4.1 Dedicated Resources
          2. 24.4.4.4.2 Slave Transmit-and-Receive Mode
          3. 24.4.4.4.3 Slave Transmit-Only Mode
          4. 24.4.4.4.4 Slave Receive-Only Mode
        5. 24.4.4.5 3-Pin or 4-Pin Mode
        6. 24.4.4.6 FIFO Buffer Management
          1. 24.4.4.6.1 Buffer Almost Full
          2. 24.4.4.6.2 Buffer Almost Empty
          3. 24.4.4.6.3 End of Transfer Management
        7. 24.4.4.7 Interrupts
          1. 24.4.4.7.1 Interrupt Events in Master Mode
            1. 24.4.4.7.1.1 TXx_EMPTY
            2. 24.4.4.7.1.2 TXx_UNDERFLOW
            3. 24.4.4.7.1.3 RXx_ FULL
            4. 24.4.4.7.1.4 End Of Word Count
          2. 24.4.4.7.2 Interrupt Events in Slave Mode
            1. 24.4.4.7.2.1 TXx_EMPTY
            2. 24.4.4.7.2.2 TXx_UNDERFLOW
            3. 24.4.4.7.2.3 RXx_FULL
            4. 24.4.4.7.2.4 RX0_OVERFLOW
            5. 24.4.4.7.2.5 End Of Word Count
          3. 24.4.4.7.3 Interrupt-Driven Operation
          4. 24.4.4.7.4 Polling
        8. 24.4.4.8 DMA Requests
        9. 24.4.4.9 Power Saving Management
          1. 24.4.4.9.1 Normal Mode
          2. 24.4.4.9.2 Idle Mode
            1. 24.4.4.9.2.1 Wake-Up Event in Smart-Idle Mode
            2. 24.4.4.9.2.2 Transitions From Smart-Idle Mode to Normal Mode
            3. 24.4.4.9.2.3 Force-Idle Mode
      5. 24.4.5 McSPI Programming Guide
        1. 24.4.5.1 Global Initialization
          1. 24.4.5.1.1 Surrounding Modules Global Initialization
          2. 24.4.5.1.2 McSPI Global Initialization
            1. 24.4.5.1.2.1 Main Sequence – McSPI Global Initialization
        2. 24.4.5.2 Operational Mode Configuration
          1. 24.4.5.2.1 McSPI Operational Modes
            1. 24.4.5.2.1.1 Common Transfer Sequence
            2. 24.4.5.2.1.2 End of Transfer Sequences
            3. 24.4.5.2.1.3 Transmit-and-Receive (Master and Slave)
            4. 24.4.5.2.1.4 Transmit-Only (Master and Slave)
              1. 24.4.5.2.1.4.1 Based on Interrupt Requests
              2. 24.4.5.2.1.4.2 Based on DMA Write Requests
            5. 24.4.5.2.1.5 Master Normal Receive-Only
              1. 24.4.5.2.1.5.1 Based on Interrupt Requests
              2. 24.4.5.2.1.5.2 Based on DMA Read Requests
            6. 24.4.5.2.1.6 Master Turbo Receive-Only
              1. 24.4.5.2.1.6.1 Based on Interrupt Requests
              2. 24.4.5.2.1.6.2 Based on DMA Read Requests
            7. 24.4.5.2.1.7 Slave Receive-Only
            8. 24.4.5.2.1.8 Transfer Procedures With FIFO
              1. 24.4.5.2.1.8.1 Common Transfer Sequence in FIFO Mode
              2. 24.4.5.2.1.8.2 End of Transfer Sequences in FIFO Mode
              3. 24.4.5.2.1.8.3 Transmit-and-Receive With Word Count
              4. 24.4.5.2.1.8.4 Transmit-and-Receive Without Word Count
              5. 24.4.5.2.1.8.5 Transmit-Only
              6. 24.4.5.2.1.8.6 Receive-Only With Word Count
              7. 24.4.5.2.1.8.7 Receive-Only Without Word Count
        3. 24.4.5.3 Common Transfer Procedures Without FIFO – Polling Method
          1. 24.4.5.3.1 Receive-Only Procedure – Polling Method
          2. 24.4.5.3.2 Receive-Only Procedure – Interrupt Method
          3. 24.4.5.3.3 Transmit-Only Procedure – Polling Method
          4. 24.4.5.3.4 Transmit-and-Receive Procedure – Polling Method
      6. 24.4.6 McSPI Register Manual
        1. 24.4.6.1 McSPI Instance Summary
        2. 24.4.6.2 McSPI Registers
          1. 24.4.6.2.1 McSPI Register Summary
          2. 24.4.6.2.2 McSPI Register Description
    5. 24.5  Quad Serial Peripheral Interface
      1. 24.5.1 Quad Serial Peripheral Interface Overview
      2. 24.5.2 QSPI Environment
      3. 24.5.3 QSPI Integration
      4. 24.5.4 QSPI Functional Description
        1. 24.5.4.1 QSPI Block Diagram
          1. 24.5.4.1.1 SFI Register Control
          2. 24.5.4.1.2 SFI Translator
          3. 24.5.4.1.3 SPI Control Interface
          4. 24.5.4.1.4 SPI Clock Generator
          5. 24.5.4.1.5 SPI Control State-Machine
          6. 24.5.4.1.6 SPI Data Shifter
        2. 24.5.4.2 QSPI Clock Configuration
        3. 24.5.4.3 QSPI Interrupt Requests
        4. 24.5.4.4 QSPI Memory Regions
      5. 24.5.5 QSPI Register Manual
        1. 24.5.5.1 QSPI Instance Summary
        2. 24.5.5.2 QSPI registers
          1. 24.5.5.2.1 QSPI Register Summary
          2. 24.5.5.2.2 QSPI Register Description
    6. 24.6  Multichannel Audio Serial Port
      1. 24.6.1 McASP Overview
      2. 24.6.2 McASP Environment
        1. 24.6.2.1 McASP Signals
        2. 24.6.2.2 Protocols and Data Formats
          1. 24.6.2.2.1 Protocols Supported
          2. 24.6.2.2.2 Definition of Terms
          3. 24.6.2.2.3 TDM Format
          4. 24.6.2.2.4 I2S Format
          5. 24.6.2.2.5 S/PDIF Coding Format
            1. 24.6.2.2.5.1 Biphase-Mark Code
            2. 24.6.2.2.5.2 S/PDIF Subframe Format
            3. 24.6.2.2.5.3 Frame Format
      3. 24.6.3 McASP Integration
      4. 24.6.4 McASP Functional Description
        1. 24.6.4.1  McASP Block Diagram
        2. 24.6.4.2  McASP Clock and Frame-Sync Configurations
          1. 24.6.4.2.1 McASP Transmit Clock
          2. 24.6.4.2.2 McASP Receive Clock
          3. 24.6.4.2.3 Frame-Sync Generator
          4. 24.6.4.2.4 Synchronous and Asynchronous Transmit and Receive Operations
        3. 24.6.4.3  Serializers
        4. 24.6.4.4  Format Units
          1. 24.6.4.4.1 Transmit Format Unit
            1. 24.6.4.4.1.1 TDM Mode Transmission Data Alignment Settings
            2. 24.6.4.4.1.2 DIT Mode Transmission Data Alignment Settings
          2. 24.6.4.4.2 Receive Format Unit
            1. 24.6.4.4.2.1 TDM Mode Reception Data Alignment Settings
        5. 24.6.4.5  State-Machines
        6. 24.6.4.6  TDM Sequencers
        7. 24.6.4.7  McASP Software Reset
        8. 24.6.4.8  McASP Power Management
        9. 24.6.4.9  Transfer Modes
          1. 24.6.4.9.1 Burst Transfer Mode
          2. 24.6.4.9.2 Time-Division Multiplexed (TDM) Transfer Mode
            1. 24.6.4.9.2.1 TDM Time Slots Generation and Processing
            2. 24.6.4.9.2.2 Special 384-Slot TDM Mode for Connection to External DIR
          3. 24.6.4.9.3 DIT Transfer Mode
            1. 24.6.4.9.3.1 Transmit DIT Encoding
            2. 24.6.4.9.3.2 Transmit DIT Clock and Frame-Sync Generation
            3. 24.6.4.9.3.3 DIT Channel Status and User Data Register Files
        10. 24.6.4.10 Data Transmission and Reception
          1. 24.6.4.10.1 Data Ready Status and Event/Interrupt Generation
            1. 24.6.4.10.1.1 Transmit Data Ready
            2. 24.6.4.10.1.2 Receive Data Ready
            3. 24.6.4.10.1.3 Transfers Through the Data Port (DATA)
            4. 24.6.4.10.1.4 Transfers Through the Configuration Bus (CFG)
            5. 24.6.4.10.1.5 Using a Device CPU for McASP Servicing
            6. 24.6.4.10.1.6 Using the DMA for McASP Servicing
        11. 24.6.4.11 McASP Audio FIFO (AFIFO)
          1. 24.6.4.11.1 AFIFO Data Transmission
            1. 24.6.4.11.1.1 Transmit DMA Event Pacer
          2. 24.6.4.11.2 AFIFO Data Reception
            1. 24.6.4.11.2.1 Receive DMA Event Pacer
          3. 24.6.4.11.3 Arbitration Between Transmit and Receive DMA Requests
        12. 24.6.4.12 McASP Events and Interrupt Requests
          1. 24.6.4.12.1 Transmit Data Ready Event and Interrupt
          2. 24.6.4.12.2 Receive Data Ready Event and Interrupt
          3. 24.6.4.12.3 Error Interrupt
          4. 24.6.4.12.4 Multiple Interrupts
        13. 24.6.4.13 DMA Requests
        14. 24.6.4.14 Loopback Modes
          1. 24.6.4.14.1 Loopback Mode Configurations
        15. 24.6.4.15 Error Reporting
          1. 24.6.4.15.1 Buffer Underrun Error -Transmitter
          2. 24.6.4.15.2 Buffer Overrun Error-Receiver
          3. 24.6.4.15.3 DATA Port Error - Transmitter
          4. 24.6.4.15.4 DATA Port Error - Receiver
          5. 24.6.4.15.5 Unexpected Frame Sync Error
          6. 24.6.4.15.6 Clock Failure Detection
            1. 24.6.4.15.6.1 Clock Failure Check Startup
            2. 24.6.4.15.6.2 Transmit Clock Failure Check and Recovery
            3. 24.6.4.15.6.3 Receive Clock Failure Check and Recovery
      5. 24.6.5 McASP Low-Level Programming Model
        1. 24.6.5.1 Global Initialization
          1. 24.6.5.1.1 Surrounding Modules Global Initialization
          2. 24.6.5.1.2 McASP Global Initialization
            1. 24.6.5.1.2.1 Main Sequence – McASP Global Initialization for DIT-Transmission
              1. 24.6.5.1.2.1.1 Subsequence – Transmit Format Unit Configuration for DIT-Transmission
              2. 24.6.5.1.2.1.2 Subsequence – Transmit Frame Synchronization Generator Configuration for DIT-Transmission
              3. 24.6.5.1.2.1.3 Subsequence – Transmit Clock Generator Configuration for DIT-Transmission
              4. 24.6.5.1.2.1.4 Subsequence - McASP Pins Functional Configuration
              5. 24.6.5.1.2.1.5 Subsequence – DIT-specific Subframe Fields Configuration
            2. 24.6.5.1.2.2 Main Sequence – McASP Global Initialization for TDM-Reception
              1. 24.6.5.1.2.2.1 Subsequence – Receive Format Unit Configuration in TDM Mode
              2. 24.6.5.1.2.2.2 Subsequence – Receive Frame Synchronization Generator Configuration in TDM Mode
              3. 24.6.5.1.2.2.3 Subsequence – Receive Clock Generator Configuration
              4. 24.6.5.1.2.2.4 Subsequence—McASP Receiver Pins Functional Configuration
            3. 24.6.5.1.2.3 Main Sequence – McASP Global Initialization for TDM -Transmission
              1. 24.6.5.1.2.3.1 Subsequence – Transmit Format Unit Configuration in TDM Mode
              2. 24.6.5.1.2.3.2 Subsequence – Transmit Frame Synchronization Generator Configuration in TDM Mode
              3. 24.6.5.1.2.3.3 Subsequence – Transmit Clock Generator Configuration for TDM Cases
              4. 24.6.5.1.2.3.4 Subsequence—McASP Transmit Pins Functional Configuration
        2. 24.6.5.2 Operational Modes Configuration
          1. 24.6.5.2.1 McASP Transmission Modes
            1. 24.6.5.2.1.1 Main Sequence – McASP DIT- /TDM- Polling Transmission Method
            2. 24.6.5.2.1.2 Main Sequence – McASP DIT- /TDM - Interrupt Transmission Method
            3. 24.6.5.2.1.3 Main Sequence –McASP DIT- /TDM - Mode DMA Transmission Method
          2. 24.6.5.2.2 McASP Reception Modes
            1. 24.6.5.2.2.1 Main Sequence – McASP Polling Reception Method
            2. 24.6.5.2.2.2 Main Sequence – McASP TDM - Interrupt Reception Method
            3. 24.6.5.2.2.3 Main Sequence – McASP TDM - Mode DMA Reception Method
          3. 24.6.5.2.3 McASP Event Servicing
            1. 24.6.5.2.3.1 McASP DIT-/TDM- Transmit Interrupt Events Servicing
            2. 24.6.5.2.3.2 McASP TDM- Receive Interrupt Events Servicing
            3. 24.6.5.2.3.3 3137
            4. 24.6.5.2.3.4 Subsequence – McASP DIT-/TDM -Modes Transmit Error Handling
            5. 24.6.5.2.3.5 Subsequence – McASP Receive Error Handling
      6. 24.6.6 McASP Register Manual
        1. 24.6.6.1 McASP Instance Summary
        2. 24.6.6.2 McASP Registers
          1. 24.6.6.2.1 MCASP_CFG Register Summary
          2. 24.6.6.2.2 MCASP_CFG Register Description
          3. 24.6.6.2.3 MCASP_AFIFO Register Summary
          4. 24.6.6.2.4 MCASP_AFIFO Register Description
          5. 24.6.6.2.5 MCASP_DAT Register Summary
          6. 24.6.6.2.6 MCASP_DAT Register Description
    7. 24.7  SuperSpeed USB DRD
      1. 24.7.1 SuperSpeed USB DRD Subsystem Overview
        1. 24.7.1.1 Main Features
        2. 24.7.1.2 Unsupported Features
      2. 24.7.2 SuperSpeed USB DRD Subsystem Environment
        1. 24.7.2.1 SuperSpeed USB DRD Subsystem I/O Interfaces
        2. 24.7.2.2 SuperSpeed USB Subsystem Application
      3. 24.7.3 SuperSpeed USB Subsystem Integration
    8. 24.8  SATA Controller
      1. 24.8.1 SATA Controller Overview
        1. 24.8.1.1 SATA Controller
          1. 24.8.1.1.1 AHCI Mode Overview
          2. 24.8.1.1.2 Native Command Queuing
          3. 24.8.1.1.3 SATA Transport Layer Functionalities
          4. 24.8.1.1.4 SATA Link Layer Functionalities
        2. 24.8.1.2 SATA Controller Features
      2. 24.8.2 SATA Controller Environment
      3. 24.8.3 SATA Controller Integration
      4. 24.8.4 SATA Controller Functional Description
        1. 24.8.4.1  SATA Controller Block Diagram
        2. 24.8.4.2  SATA Controller Link Layer Protocol and Data Format
          1. 24.8.4.2.1 SATA 8b/10b Parallel Encoding/Decoding
          2. 24.8.4.2.2 SATA Stream Dword Components
          3. 24.8.4.2.3 Scrambling/Descrambling Processing
        3. 24.8.4.3  Resets
          1. 24.8.4.3.1 Hardware Reset
          2. 24.8.4.3.2 Software Initiated Resets
            1. 24.8.4.3.2.1 Software Reset
            2. 24.8.4.3.2.2 Port Reset
            3. 24.8.4.3.2.3 HBA Reset
        4. 24.8.4.4  Power Management
          1. 24.8.4.4.1 SATA Specific Power Management
            1. 24.8.4.4.1.1 PARTIAL Power Mode
            2. 24.8.4.4.1.2 Slumber Power Mode
            3. 24.8.4.4.1.3 Software Control over Low Power States
            4. 24.8.4.4.1.4 Aggressive Power Management
          2. 24.8.4.4.2 Master Standby and Slave Idle Management Protocols
          3. 24.8.4.4.3 Clock Gating Synchronization
          4. 24.8.4.4.4 3187
        5. 24.8.4.5  Interrupt Requests
          1. 24.8.4.5.1 Interrupt Generation
          2. 24.8.4.5.2 Levels of Interrupt Control
          3. 24.8.4.5.3 Interrupt Events Description
            1. 24.8.4.5.3.1  Task File Error Status
            2. 24.8.4.5.3.2  Host Bus Fatal Error
            3. 24.8.4.5.3.3  Interface Fatal Error Status
            4. 24.8.4.5.3.4  Interface Non-Fatal Error Status
            5. 24.8.4.5.3.5  Overflow Status
            6. 24.8.4.5.3.6  Incorrect Port Multiplier Status
            7. 24.8.4.5.3.7  PHYReady Change Status
            8. 24.8.4.5.3.8  Port Connect Change Status
            9. 24.8.4.5.3.9  Descriptor Processed
            10. 24.8.4.5.3.10 Unknown FIS Interrupt
            11. 24.8.4.5.3.11 Set Device Bits Interrupt
            12. 24.8.4.5.3.12 DMA Setup FIS Interrupt
            13. 24.8.4.5.3.13 PIO Setup FIS Interrupt
            14. 24.8.4.5.3.14 Device to Host Register FIS Interrupt
          4. 24.8.4.5.4 Interrupt Condition Control
          5. 24.8.4.5.5 Command Completion Coalescing Interrupts
            1. 24.8.4.5.5.1 CCC Interrupt Based on Expired Timeout Value
            2. 24.8.4.5.5.2 CCC Interrupt Based on Completion Count
        6. 24.8.4.6  System Memory FIS Descriptors
          1. 24.8.4.6.1 Command List Structure Basics
          2. 24.8.4.6.2 Supported Types of Commands
          3. 24.8.4.6.3 Received FIS Structures
          4. 24.8.4.6.4 FIS Descriptors Summary
        7. 24.8.4.7  Transport Layer FIS-Based Interactions
          1. 24.8.4.7.1 Software Processing of the Port Command List
          2. 24.8.4.7.2 Handling the Received FIS Descriptors
        8. 24.8.4.8  DMA Port Configuration
        9. 24.8.4.9  Port Multiplier Operation
          1. 24.8.4.9.1 Command-Based Switching Mode
            1. 24.8.4.9.1.1 Port Multiplier NCQ and Non-NCQ Commands Generation
          2. 24.8.4.9.2 Port Multiplier Enumeration
        10. 24.8.4.10 Activity LED Generation Functionality
        11. 24.8.4.11 Supported Types of SATA Transfers
          1. 24.8.4.11.1 Supported Higher Level Protocols
        12. 24.8.4.12 SATA Controller AHCI Hardware Register Interface
      5. 24.8.5 SATA Controller Low Level Programming Model
        1. 24.8.5.1 Global Initialization
          1. 24.8.5.1.1 Surrounding Modules Global Initialization
          2. 24.8.5.1.2 SATA Controller Global Initialization
            1. 24.8.5.1.2.1 Main Sequence SATA Controller Global Initialization
            2. 24.8.5.1.2.2 SubSequence – Firmware Capability Writes
          3. 24.8.5.1.3 Issue Command - Main Sequence
          4. 24.8.5.1.4 Receive FIS—Main Sequence
      6. 24.8.6 SATA Controller Register Manual
        1. 24.8.6.1 SATA Controller Instance Summary
        2. 24.8.6.2 DWC_ahsata Registers
          1. 24.8.6.2.1 DWC_ahsata Register Summary
          2. 24.8.6.2.2 DWC_ahsata Register Description
        3. 24.8.6.3 SATAMAC_wrapper Registers
          1. 24.8.6.3.1 SATAMAC_wrapper Register Summary
          2. 24.8.6.3.2 SATAMAC_wrapper Register Description
    9. 24.9  PCIe Controller
      1. 24.9.1 PCIe Controller Subsystem Overview
        1. 24.9.1.1 PCIe Controllers Key Features
      2. 24.9.2 PCIe Controller Environment
      3. 24.9.3 PCIe Controllers Integration
      4. 24.9.4 PCIe SS Controller Functional Description
        1. 24.9.4.1 PCIe Controller Functional Block Diagram
        2. 24.9.4.2 PCIe Traffics
        3. 24.9.4.3 PCIe Controller Ports on L3_MAIN Interconnect
          1. 24.9.4.3.1 PCIe Controller Master Port
            1. 24.9.4.3.1.1 PCIe Controller Master Port to MMU Routing
          2. 24.9.4.3.2 PCIe Controller Slave Port
          3. 24.9.4.3.3 3255
        4. 24.9.4.4 PCIe Controller Reset Management
          1. 24.9.4.4.1 PCIe Reset Types and Stickiness
          2. 24.9.4.4.2 PCIe Reset Conditions
            1. 24.9.4.4.2.1 PCIe Main Reset
              1. 24.9.4.4.2.1.1 PCIe Subsystem Cold Main Reset Source
              2. 24.9.4.4.2.1.2 PCIe Subsystem Warm Main Reset Sources
            2. 24.9.4.4.2.2 PCIe Standard Specific Resets to the PCIe Core Logic
        5. 24.9.4.5 PCIe Controller Power Management
          1. 24.9.4.5.1 PCIe Protocol Power Management
            1. 24.9.4.5.1.1 PCIe Device/function power state (D-state)
            2. 24.9.4.5.1.2 PCIe Controller PIPE Powerstate (Powerdown Control)
          2. 24.9.4.5.2 PCIE Controller Clocks Management
            1. 24.9.4.5.2.1 PCIe Clock Domains
            2. 24.9.4.5.2.2 PCIe Controller Idle/Standby Clock Management Interfaces
              1. 24.9.4.5.2.2.1 PCIe Controller Master Standby Behavior
              2. 24.9.4.5.2.2.2 PCIe Controller Slave Idle/Disconnect Behavior
                1. 24.9.4.5.2.2.2.1 PCIe Controller Idle Sequence During D3cold/L3 State
        6. 24.9.4.6 PCIe Controller Interrupt Requests
          1. 24.9.4.6.1 PCIe Controller Main Hardware Management
            1. 24.9.4.6.1.1 PCIe Management Interrupt Events
            2. 24.9.4.6.1.2 PCIe Error Interrupt Events
            3. 24.9.4.6.1.3 Summary of PCIe Controller Main Hardware Interrupt Events
          2. 24.9.4.6.2 PCIe Controller Legacy and MSI Virtual Interrupts Management
            1. 24.9.4.6.2.1 Legacy PCI Interrupts (INTx)
              1. 24.9.4.6.2.1.1 Legacy PCI Interrupt Events Overview
              2. 24.9.4.6.2.1.2 Legacy PCI Interrupt Transmission (EP mode only)
              3. 24.9.4.6.2.1.3 Legacy PCI Interrupt Reception (RC mode only)
            2. 24.9.4.6.2.2 PCIe Controller Message Signaled Interrupts (MSI)
              1. 24.9.4.6.2.2.1 PCIe Specific MSI Interrupt Event Overview
              2. 24.9.4.6.2.2.2 PCIe Controller MSI Transmission Methods (EP mode)
                1. 24.9.4.6.2.2.2.1 PCIe Controller MSI transmission, hardware method
                2. 24.9.4.6.2.2.2.2 PCIe Controller MSI transmission, software method
              3. 24.9.4.6.2.2.3 PCIe Controller MSI Reception (RC mode)
          3. 24.9.4.6.3 PCIe Controller MSI Hardware Interrupt Events
        7. 24.9.4.7 PCIe Controller Address Spaces and Address Translation
        8. 24.9.4.8 PCIe Traffic Requesting and Responding
          1. 24.9.4.8.1 PCIe Memory-type (Mem) Traffic Management
            1. 24.9.4.8.1.1 PCIe Memory Requesting
            2. 24.9.4.8.1.2 PCIe Memory Responding
          2. 24.9.4.8.2 PCIe Configuration Type (Cfg) Traffic Management
            1. 24.9.4.8.2.1 RC Self-configuration (RC Only)
            2. 24.9.4.8.2.2 Configuration Requests over PCIe (RC Only)
            3. 24.9.4.8.2.3 Configuration Responding over PCIe (EP Only)
          3. 24.9.4.8.3 PCIe I/O-type (IO) traffic management
            1. 24.9.4.8.3.1 PCIe I/O requesting (RC only)
            2. 24.9.4.8.3.2 PCIe IO BAR initialization before enumeration (EP only)
            3. 24.9.4.8.3.3 PCIe I/O responding (PCI legacy EP only)
          4. 24.9.4.8.4 PCIe Message-type (Msg) traffic management
        9. 24.9.4.9 PCIe Programming Register Interface
          1. 24.9.4.9.1 PCIe Register Access
          2. 24.9.4.9.2 Double Mapping of the PCIe Local Control Registers
          3. 24.9.4.9.3 Base Address Registers (BAR) Initialization
      5. 24.9.5 PCIe Controller Low Level Programming Model
        1. 24.9.5.1 Surrounding Modules Global Initialization
        2. 24.9.5.2 Main Sequence of PCIe Controllers Initalization
      6. 24.9.6 PCIe Standard Registers vs PCIe Subsystem Hardware Registers Mapping
      7. 24.9.7 PCIe Controller Register Manual
        1. 24.9.7.1 PCIe Controller Instance Summary
        2. 24.9.7.2 PCIe_SS_EP_CFG_PCIe Registers
          1. 24.9.7.2.1 PCIe_SS_EP_CFG_PCIe Register Summary
          2. 24.9.7.2.2 PCIe_SS_EP_CFG_PCIe Register Description
          3. 24.9.7.2.3 3317
        3. 24.9.7.3 PCIe_SS_EP_CFG_DBICS Registers
          1. 24.9.7.3.1 PCIe_SS_EP_CFG_DBICS Register Summary
          2. 24.9.7.3.2 PCIe_SS_EP_CFG_DBICS Register Description
        4. 24.9.7.4 PCIe_SS_RC_CFG_DBICS Registers
          1. 24.9.7.4.1 PCIe_SS_RC_CFG_DBICS Register Summary
          2. 24.9.7.4.2 PCIe_SS_RC_CFG_DBICS Register Description
        5. 24.9.7.5 PCIe_SS_PL_CONF Registers
          1. 24.9.7.5.1 PCIe_SS_PL_CONF Register Summary
          2. 24.9.7.5.2 PCIe_SS_PL_CONF Register Description
        6. 24.9.7.6 PCIe_SS_EP_CFG_DBICS2 Registers
          1. 24.9.7.6.1 PCIe_SS_EP_CFG_DBICS2 Register Summary
          2. 24.9.7.6.2 PCIe_SS_EP_CFG_DBICS2 Register Description
        7. 24.9.7.7 PCIe_SS_RC_CFG_DBICS2 Registers
          1. 24.9.7.7.1 PCIe_SS_RC_CFG_DBICS2 Register Summary
          2. 24.9.7.7.2 PCIe_SS_RC_CFG_DBICS2 Register Description
        8. 24.9.7.8 PCIe_SS_TI_CONF Registers
          1. 24.9.7.8.1 PCIe_SS_TI_CONF Register Summary
          2. 24.9.7.8.2 PCIe_SS_TI_CONF Register Description
    10. 24.10 DCAN
      1. 24.10.1 DCAN Overview
        1. 24.10.1.1 Features
      2. 24.10.2 DCAN Environment
        1. 24.10.2.1 CAN Network Basics
      3. 24.10.3 DCAN Integration
      4. 24.10.4 DCAN Functional Description
        1. 24.10.4.1  Module Clocking Requirements
        2. 24.10.4.2  Interrupt Functionality
          1. 24.10.4.2.1 Message Object Interrupts
          2. 24.10.4.2.2 Status Change Interrupts
          3. 24.10.4.2.3 Error Interrupts
        3. 24.10.4.3  DMA Functionality
        4. 24.10.4.4  Local Power-Down Mode
          1. 24.10.4.4.1 Entering Local Power-Down Mode
          2. 24.10.4.4.2 Wakeup From Local Power Down
        5. 24.10.4.5  Parity Check Mechanism
          1. 24.10.4.5.1 Behavior on Parity Error
          2. 24.10.4.5.2 Parity Testing
        6. 24.10.4.6  Debug/Suspend Mode
        7. 24.10.4.7  Configuration of Message Objects Description
          1. 24.10.4.7.1 Configuration of a Transmit Object for Data Frames
          2. 24.10.4.7.2 Configuration of a Transmit Object for Remote Frames
          3. 24.10.4.7.3 Configuration of a Single Receive Object for Data Frames
          4. 24.10.4.7.4 Configuration of a Single Receive Object for Remote Frames
          5. 24.10.4.7.5 Configuration of a FIFO Buffer
        8. 24.10.4.8  Message Handling
          1. 24.10.4.8.1  Message Handler Overview
          2. 24.10.4.8.2  Receive/Transmit Priority
          3. 24.10.4.8.3  Transmission of Messages in Event Driven CAN Communication
          4. 24.10.4.8.4  Updating a Transmit Object
          5. 24.10.4.8.5  Changing a Transmit Object
          6. 24.10.4.8.6  Acceptance Filtering of Received Messages
          7. 24.10.4.8.7  Reception of Data Frames
          8. 24.10.4.8.8  Reception of Remote Frames
          9. 24.10.4.8.9  Reading Received Messages
          10. 24.10.4.8.10 Requesting New Data for a Receive Object
          11. 24.10.4.8.11 Storing Received Messages in FIFO Buffers
          12. 24.10.4.8.12 Reading From a FIFO Buffer
        9. 24.10.4.9  CAN Bit Timing
          1. 24.10.4.9.1 Bit Time and Bit Rate
            1. 24.10.4.9.1.1 Synchronization Segment
            2. 24.10.4.9.1.2 Propagation Time Segment
            3. 24.10.4.9.1.3 Phase Buffer Segments and Synchronization
            4. 24.10.4.9.1.4 Oscillator Tolerance Range
          2. 24.10.4.9.2 DCAN Bit Timing Registers
            1. 24.10.4.9.2.1 Calculation of the Bit Timing Parameters
            2. 24.10.4.9.2.2 Example for Bit Timing Calculation
        10. 24.10.4.10 Message Interface Register Sets
          1. 24.10.4.10.1 Message Interface Register Sets 1 and 2
          2. 24.10.4.10.2 IF3 Register Set
        11. 24.10.4.11 Message RAM
          1. 24.10.4.11.1 Structure of Message Objects
          2. 24.10.4.11.2 Addressing Message Objects in RAM
          3. 24.10.4.11.3 Message RAM Representation in Debug/Suspend Mode
          4. 24.10.4.11.4 Message RAM Representation in Direct Access Mode
        12. 24.10.4.12 CAN Operation
          1. 24.10.4.12.1 CAN Module Initialization
            1. 24.10.4.12.1.1 Configuration of CAN Bit Timing
            2. 24.10.4.12.1.2 Configuration of Message Objects
            3. 24.10.4.12.1.3 DCAN RAM Hardware Initialization
          2. 24.10.4.12.2 CAN Message Transfer (Normal Operation)
            1. 24.10.4.12.2.1 Automatic Retransmission
            2. 24.10.4.12.2.2 Auto-Bus-On
          3. 24.10.4.12.3 Test Modes
            1. 24.10.4.12.3.1 Silent Mode
            2. 24.10.4.12.3.2 Loopback Mode
            3. 24.10.4.12.3.3 External Loopback Mode
            4. 24.10.4.12.3.4 Loopback Mode Combined With Silent Mode
            5. 24.10.4.12.3.5 Software Control of CAN_TX Pin
        13. 24.10.4.13 GPIO Support
      5. 24.10.5 DCAN Register Manual
        1. 24.10.5.1 DCAN Instance Summary
        2. 24.10.5.2 DCAN Registers
          1. 24.10.5.2.1 DCAN Register Summary
          2. 24.10.5.2.2 DCAN Register Description
    11. 24.11 Gigabit Ethernet Switch (GMAC_SW)
      1. 24.11.1 GMAC_SW Overview
        1. 24.11.1.1 Features
        2. 24.11.1.2 3415
      2. 24.11.2 GMAC_SW Environment
        1. 24.11.2.1 G/MII Interface
        2. 24.11.2.2 RMII Interface
        3. 24.11.2.3 RGMII Interface
      3. 24.11.3 GMAC_SW Integration
      4. 24.11.4 GMAC_SW Functional Description
        1. 24.11.4.1  Functional Block Diagram
        2. 24.11.4.2  GMAC_SW Ports
          1. 24.11.4.2.1 Interface Mode Selection
        3. 24.11.4.3  Clocking
          1. 24.11.4.3.1 Subsystem Clocking
          2. 24.11.4.3.2 Interface Clocking
            1. 24.11.4.3.2.1 G/MII Interface Clocking
            2. 24.11.4.3.2.2 RGMII Interface Clocking
            3. 24.11.4.3.2.3 RMII Interface Clocking
            4. 24.11.4.3.2.4 MDIO Clocking
        4. 24.11.4.4  Software IDLE
        5. 24.11.4.5  Interrupt Functionality
          1. 24.11.4.5.1 Receive Packet Completion Pulse Interrupt (RX_PULSE)
          2. 24.11.4.5.2 Transmit Packet Completion Pulse Interrupt (TX_PULSE)
          3. 24.11.4.5.3 Receive Threshold Pulse Interrupt (RX_THRESH_PULSE)
          4. 24.11.4.5.4 Miscellaneous Pulse Interrupt (MISC_PULSE)
            1. 24.11.4.5.4.1 EVNT_PEND( CPTS_PEND) Interrupt
            2. 24.11.4.5.4.2 Statistics Interrupt
            3. 24.11.4.5.4.3 Host Error interrupt
            4. 24.11.4.5.4.4 MDIO Interrupts
          5. 24.11.4.5.5 Interrupt Pacing
        6. 24.11.4.6  Reset Isolation
          1. 24.11.4.6.1 Reset Isolation Functional Description
        7. 24.11.4.7  Software Reset
        8. 24.11.4.8  CPSW_3G
          1. 24.11.4.8.1  CPDMA RX and TX Interfaces
            1. 24.11.4.8.1.1 Functional Operation
            2. 24.11.4.8.1.2 Receive DMA Interface
              1. 24.11.4.8.1.2.1 Receive DMA Host Configuration
              2. 24.11.4.8.1.2.2 Receive Channel Teardown
            3. 24.11.4.8.1.3 Transmit DMA Interface
              1. 24.11.4.8.1.3.1 Transmit DMA Host Configuration
              2. 24.11.4.8.1.3.2 Transmit Channel Teardown
            4. 24.11.4.8.1.4 Transmit Rate Limiting
            5. 24.11.4.8.1.5 Command IDLE
          2. 24.11.4.8.2  Address Lookup Engine (ALE)
            1. 24.11.4.8.2.1 Address Table Entry
              1. 24.11.4.8.2.1.1 Free Table Entry
              2. 24.11.4.8.2.1.2 Multicast Address Table Entry
              3. 24.11.4.8.2.1.3 VLAN/Multicast Address Table Entry
              4. 24.11.4.8.2.1.4 Unicast Address Table Entry
              5. 24.11.4.8.2.1.5 OUI Unicast Address Table Entry
              6. 24.11.4.8.2.1.6 VLAN/Unicast Address Table Entry
              7. 24.11.4.8.2.1.7 VLAN Table Entry
            2. 24.11.4.8.2.2 Packet Forwarding Processes
            3. 24.11.4.8.2.3 Learning Process
            4. 24.11.4.8.2.4 VLAN Aware Mode
            5. 24.11.4.8.2.5 VLAN Unaware Mode
          3. 24.11.4.8.3  Packet Priority Handling
          4. 24.11.4.8.4  FIFO Memory Control
          5. 24.11.4.8.5  FIFO Transmit Queue Control
            1. 24.11.4.8.5.1 Normal Priority Mode
            2. 24.11.4.8.5.2 Dual MAC Mode
            3. 24.11.4.8.5.3 Rate Limit Mode
          6. 24.11.4.8.6  Audio Video Bridging
            1. 24.11.4.8.6.1 IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks (Precision Time Protocol (PTP))
              1. 24.11.4.8.6.1.1 IEEE 1722: "Layer 2 Transport Protocol for Time-Sensitive Streams"
              2. 24.11.4.8.6.1.2 IEEE 1733: Extends RTCP for RTP Streaming over AVB-supported Networks
            2. 24.11.4.8.6.2 IEEE 802.1Qav: "Virtual Bridged Local Area Networks: Forwarding and Queuing for Time-Sensitive Streams"
              1. 24.11.4.8.6.2.1 Configuring the Device for 802.1Qav Operation:
          7. 24.11.4.8.7  Ethernet MAC Sliver (CPGMAC_SL)
            1. 24.11.4.8.7.1 G/MII Media Independent Interface
              1. 24.11.4.8.7.1.1 Data Reception
                1. 24.11.4.8.7.1.1.1 Receive Control
                2. 24.11.4.8.7.1.1.2 Receive Inter-Frame Interval
              2. 24.11.4.8.7.1.2 Data Transmission
                1. 24.11.4.8.7.1.2.1 Transmit Control
                2. 24.11.4.8.7.1.2.2 CRC Insertion
                3. 24.11.4.8.7.1.2.3 MTXER
                4. 24.11.4.8.7.1.2.4 Adaptive Performance Optimization (APO)
                5. 24.11.4.8.7.1.2.5 Inter-Packet-Gap Enforcement
                6. 24.11.4.8.7.1.2.6 Back Off
                7. 24.11.4.8.7.1.2.7 Programmable Transmit Inter-Packet Gap
                8. 24.11.4.8.7.1.2.8 Speed, Duplex and Pause Frame Support Negotiation
            2. 24.11.4.8.7.2 RMII Interface
              1. 24.11.4.8.7.2.1 Features
              2. 24.11.4.8.7.2.2 RMII Receive (RX)
              3. 24.11.4.8.7.2.3 RMII Transmit (TX)
            3. 24.11.4.8.7.3 RGMII Interface
              1. 24.11.4.8.7.3.1 RGMII Features
              2. 24.11.4.8.7.3.2 RGMII Receive (RX)
              3. 24.11.4.8.7.3.3 In-Band Mode of Operation
              4. 24.11.4.8.7.3.4 Forced Mode of Operation
              5. 24.11.4.8.7.3.5 RGMII Transmit (TX)
            4. 24.11.4.8.7.4 Frame Classification
          8. 24.11.4.8.8  Embedded Memories
          9. 24.11.4.8.9  Flow Control
            1. 24.11.4.8.9.1 CPPI Port Flow Control
            2. 24.11.4.8.9.2 Ethernet Port Flow Control
              1. 24.11.4.8.9.2.1 Receive Flow Control
                1. 24.11.4.8.9.2.1.1 Collision Based Receive Buffer Flow Control
                2. 24.11.4.8.9.2.1.2 IEEE 802.3X Based Receive Flow Control
              2. 24.11.4.8.9.2.2 Transmit Flow Control
          10. 24.11.4.8.10 Short Gap
          11. 24.11.4.8.11 Switch Latency
          12. 24.11.4.8.12 Emulation Control
          13. 24.11.4.8.13 FIFO Loopback
          14. 24.11.4.8.14 Device Level Ring (DLR) Support
          15. 24.11.4.8.15 Energy Efficient Ethernet Support (802.3az)
          16. 24.11.4.8.16 CPSW_3G Network Statistics
            1. 24.11.4.8.16.1 3522
        9. 24.11.4.9  Static Packet Filter (SPF)
          1. 24.11.4.9.1 SPF Overview
          2. 24.11.4.9.2 SPF Functional Description
            1. 24.11.4.9.2.1 SPF Block Diagram
            2. 24.11.4.9.2.2 Interrupts
            3. 24.11.4.9.2.3 Protocol Header Extractor
            4. 24.11.4.9.2.4 Programmable Rule Engine
              1. 24.11.4.9.2.4.1 Internal Registers
              2. 24.11.4.9.2.4.2 Packet Buffer
            5. 24.11.4.9.2.5 Intrusion Event Logger
            6. 24.11.4.9.2.6 Rate Limiter
            7. 24.11.4.9.2.7 Rule Engine Instruction Set Architecture
              1. 24.11.4.9.2.7.1 Instruction Format
              2. 24.11.4.9.2.7.2 Operand Field
              3. 24.11.4.9.2.7.3 Arithmetic/Logical Function Field
              4. 24.11.4.9.2.7.4 Operation Field
          3. 24.11.4.9.3 Programming Guide
            1. 24.11.4.9.3.1 Initialization Routine
            2. 24.11.4.9.3.2 Interrupt Service Routine
            3. 24.11.4.9.3.3 Rule Engine Example Program
        10. 24.11.4.10 Common Platform Time Sync (CPTS)
          1. 24.11.4.10.1 CPTS Architecture
          2. 24.11.4.10.2 CPTS Initialization
          3. 24.11.4.10.3 Time Stamp Value
          4. 24.11.4.10.4 Event FIFO
          5. 24.11.4.10.5 Time Sync Events
            1. 24.11.4.10.5.1 Time Stamp Push Event
            2. 24.11.4.10.5.2 Time Stamp Counter Rollover Event
            3. 24.11.4.10.5.3 Time Stamp Counter Half-rollover Event
            4. 24.11.4.10.5.4 Hardware Time Stamp Push Event
            5. 24.11.4.10.5.5 Ethernet Port Events
          6. 24.11.4.10.6 CPTS Interrupt Handling
        11. 24.11.4.11 CPPI Buffer Descriptors
          1. 24.11.4.11.1 TX Buffer Descriptors
            1. 24.11.4.11.1.1 CPPI TX Data Word 0
            2. 24.11.4.11.1.2 CPPI TX Data Word 1
            3. 24.11.4.11.1.3 CPPI TX Data Word 2
            4. 24.11.4.11.1.4 CPPI TX Data Word 3
          2. 24.11.4.11.2 RX Buffer Descriptors
            1. 24.11.4.11.2.1 CPPI RX Data Word 0
            2. 24.11.4.11.2.2 CPPI RX Data Word 1
            3. 24.11.4.11.2.3 CPPI RX Data Word 2
            4. 24.11.4.11.2.4 CPPI RX Data Word 3
        12. 24.11.4.12 MDIO
          1. 24.11.4.12.1 MDIO Frame Formats
          2. 24.11.4.12.2 MDIO Functional Description
      5. 24.11.5 GMAC_SW Programming Guide
        1. 24.11.5.1 Transmit Operation
        2. 24.11.5.2 Receive Operation
        3. 24.11.5.3 MDIO Software Interface
          1. 24.11.5.3.1 Initializing the MDIO Module
          2. 24.11.5.3.2 Writing Data To a PHY Register
          3. 24.11.5.3.3 Reading Data From a PHY Register
        4. 24.11.5.4 Initialization and Configuration of CPSW
      6. 24.11.6 GMAC_SW Register Manual
        1. 24.11.6.1  GMAC_SW Instance Summary
        2. 24.11.6.2  SS Registers
          1. 24.11.6.2.1 SS Register Summary
          2. 24.11.6.2.2 SS Register Description
        3. 24.11.6.3  PORT Registers
          1. 24.11.6.3.1 PORT Register Summary
          2. 24.11.6.3.2 PORT Register Description
        4. 24.11.6.4  CPDMA registers
          1. 24.11.6.4.1 CPDMA Register Summary
          2. 24.11.6.4.2 CPDMA Register Description
        5. 24.11.6.5  STATS Registers
          1. 24.11.6.5.1 STATS Register Summary
          2. 24.11.6.5.2 STATS Register Description
        6. 24.11.6.6  STATERAM Registers
          1. 24.11.6.6.1 STATERAM Register Summary
          2. 24.11.6.6.2 STATERAM Register Description
        7. 24.11.6.7  CPTS registers
          1. 24.11.6.7.1 CPTS Register Summary
          2. 24.11.6.7.2 CPTS Register Description
        8. 24.11.6.8  ALE registers
          1. 24.11.6.8.1 ALE Register Summary
          2. 24.11.6.8.2 ALE Register Description
        9. 24.11.6.9  SL registers
          1. 24.11.6.9.1 SL Register Summary
          2. 24.11.6.9.2 SL Register Description
        10. 24.11.6.10 MDIO registers
          1. 24.11.6.10.1 MDIO Register Summary
          2. 24.11.6.10.2 MDIO Register Description
        11. 24.11.6.11 WR registers
          1. 24.11.6.11.1 WR Register Summary
          2. 24.11.6.11.2 WR Register Description
        12. 24.11.6.12 SPF Registers
          1. 24.11.6.12.1 SPF Register Summary
          2. 24.11.6.12.2 SPF Register Description
    12. 24.12 Media Local Bus (MLB)
  27. 25eMMC/SD/SDIO
    1. 25.1 eMMC/SD/SDIO Overview
      1. 25.1.1 eMMC/SD/SDIO Features
    2. 25.2 eMMC/SD/SDIO Environment
      1. 25.2.1 eMMC/SD/SDIO Functional Modes
        1. 25.2.1.1 eMMC/SD/SDIO Connected to an eMMC, SD, or SDIO Card
      2. 25.2.2 Protocol and Data Format
        1. 25.2.2.1 Protocol
        2. 25.2.2.2 Data Format
    3. 25.3 eMMC/SD/SDIO Integration
    4. 25.4 eMMC/SD/SDIO Functional Description
      1. 25.4.1  Block Diagram
      2. 25.4.2  Resets
        1. 25.4.2.1 Hardware Reset
        2. 25.4.2.2 Software Reset
      3. 25.4.3  Power Management
      4. 25.4.4  Interrupt Requests
        1. 25.4.4.1 Interrupt-Driven Operation
        2. 25.4.4.2 Polling
        3. 25.4.4.3 Asynchronous Interrupt
      5. 25.4.5  DMA Modes
        1. 25.4.5.1 Master DMA Operations
          1. 25.4.5.1.1 Descriptor Table Description
          2. 25.4.5.1.2 Requirements for Descriptors
            1. 25.4.5.1.2.1 Data Length
            2. 25.4.5.1.2.2 Supported Features
            3. 25.4.5.1.2.3 Error Generation
          3. 25.4.5.1.3 Advanced DMA Description
        2. 25.4.5.2 Slave DMA Operations
          1. 25.4.5.2.1 DMA Receive Mode
          2. 25.4.5.2.2 DMA Transmit Mode
      6. 25.4.6  Mode Selection
      7. 25.4.7  Buffer Management
        1. 25.4.7.1 Data Buffer
          1. 25.4.7.1.1 Memory Size, Block Length, and Buffer-Management Relationship
          2. 25.4.7.1.2 Data Buffer Status
      8. 25.4.8  Transfer Process
        1. 25.4.8.1 Different Types of Commands
        2. 25.4.8.2 Different Types of Responses
      9. 25.4.9  Transfer or Command Status and Errors Reporting
        1. 25.4.9.1 Busy Time-Out for R1b, R5b Response Type
        2. 25.4.9.2 Busy Time-Out After Write CRC Status
        3. 25.4.9.3 Write CRC Status Time-Out
        4. 25.4.9.4 Read Data Time-Out
        5. 25.4.9.5 Boot Acknowledge Time-Out
      10. 25.4.10 Auto Command 12 Timings
        1. 25.4.10.1 Auto CMD12 Timings During Write Transfer
        2. 25.4.10.2 Auto CMD12 Timings During Read Transfer
      11. 25.4.11 Transfer Stop
      12. 25.4.12 Output Signals Generation
        1. 25.4.12.1 Generation on Falling Edge of MMC Clock
        2. 25.4.12.2 Generation on Rising Edge of MMC Clock
      13. 25.4.13 Sampling Clock Tuning
      14. 25.4.14 Card Boot Mode Management
        1. 25.4.14.1 Boot Mode Using CMD0
        2. 25.4.14.2 Boot Mode With CMD Line Tied to 0
      15. 25.4.15 MMC CE-ATA Command Completion Disable Management
      16. 25.4.16 Test Registers
      17. 25.4.17 eMMC/SD/SDIO Hardware Status Features
    5. 25.5 eMMC/SD/SDIO Programming Guide
      1. 25.5.1 Low-Level Programming Models
        1. 25.5.1.1 Global Initialization
          1. 25.5.1.1.1 Surrounding Modules Global Initialization
          2. 25.5.1.1.2 eMMC/SD/SDIO Host Controller Initialization Flow
            1. 25.5.1.1.2.1 Enable Interface and Functional Clock for MMC Controller
            2. 25.5.1.1.2.2 MMCHS Soft Reset Flow
            3. 25.5.1.1.2.3 Set MMCHS Default Capabilities
            4. 25.5.1.1.2.4 Wake-Up Configuration
            5. 25.5.1.1.2.5 MMC Host and Bus Configuration
        2. 25.5.1.2 Operational Modes Configuration
          1. 25.5.1.2.1 Basic Operations for eMMC/SD/SDIO Host Controller
            1. 25.5.1.2.1.1 Card Detection, Identification, and Selection
              1. 25.5.1.2.1.1.1 CMD Line Reset Procedure
            2. 25.5.1.2.1.2 Read/Write Transfer Flow in DMA Mode With Interrupt
              1. 25.5.1.2.1.2.1 DATA Lines Reset Procedure
            3. 25.5.1.2.1.3 Read/Write Transfer Flow in DMA Mode With Polling
            4. 25.5.1.2.1.4 Read/Write Transfer Flow Without DMA With Polling
            5. 25.5.1.2.1.5 Read/Write Transfer Flow in CE-ATA Mode
            6. 25.5.1.2.1.6 Suspend-Resume Flow
              1. 25.5.1.2.1.6.1 Suspend Flow
              2. 25.5.1.2.1.6.2 Resume Flow
            7. 25.5.1.2.1.7 Basic Operations – Steps Detailed
              1. 25.5.1.2.1.7.1 Command Transfer Flow
              2. 25.5.1.2.1.7.2 MMCHS Clock Frequency Change
              3. 25.5.1.2.1.7.3 Bus Width Selection
          2. 25.5.1.2.2 Bus Voltage Selection
          3. 25.5.1.2.3 Boot Mode Configuration
            1. 25.5.1.2.3.1 Boot Using CMD0
            2. 25.5.1.2.3.2 Boot With CMD Line Tied to 0
          4. 25.5.1.2.4 SDR104/HS200 DLL Tuning Procedure
    6. 25.6 eMMC/SD/SDIO Register Manual
      1. 25.6.1 eMMC/SD/SDIO Instance Summary
      2. 25.6.2 eMMC/SD/SDIO Registers
        1. 25.6.2.1 eMMC/SD/SDIO Register Summary
        2. 25.6.2.2 eMMC/SD/SDIO Register Description
  28. 26Shared PHY Component Subsystem
    1. 26.1 SATA PHY Subsystem
      1. 26.1.1 SATA PHY Subsystem Overview
      2. 26.1.2 SATA PHY Subsystem Environment
        1. 26.1.2.1 SATA PHY I/O Signals
      3. 26.1.3 SATA PHY Subsystem Integration
      4. 26.1.4 SATA PHY Subsystem Functional Description
        1. 26.1.4.1 SATA PLL Controller L4 Interface Adapter Functional Description
        2. 26.1.4.2 SATA PHY Serializer and Deserializer Functional Descriptions
          1. 26.1.4.2.1 SATA PHY Reset
          2. 26.1.4.2.2 SATA_PHY Clocking
            1. 26.1.4.2.2.1 SATA_PHY Input Clocks
            2. 26.1.4.2.2.2 SATA_PHY Output Clocks
          3. 26.1.4.2.3 SATA_PHY Power Management
            1. 26.1.4.2.3.1 SATA_PHY Power-Up/-Down Sequences
            2. 26.1.4.2.3.2 SATA_PHY Low-Power Modes
          4. 26.1.4.2.4 SATA_PHY Hardware Requests
        3. 26.1.4.3 SATA Clock Generator Subsystem Functional Description
          1. 26.1.4.3.1 SATA DPLL Clock Generator Overview
          2. 26.1.4.3.2 SATA DPLL Clock Generator Reset
          3. 26.1.4.3.3 SATA DPLL Low-Power Modes
          4. 26.1.4.3.4 SATA DPLL Clocks Configuration
            1. 26.1.4.3.4.1 SATA DPLL Input Clock Control
            2. 26.1.4.3.4.2 SATA DPLL Output Clock Configuration
              1. 26.1.4.3.4.2.1 SATA DPLL Output Clock Gating
          5. 26.1.4.3.5 SATA DPLL Subsystem Architecture
          6. 26.1.4.3.6 SATA DPLL Clock Generator Modes and State Transitions
            1. 26.1.4.3.6.1 SATA Clock Generator Power Up
            2. 26.1.4.3.6.2 SATA DPLL Sequences
            3. 26.1.4.3.6.3 SATA DPLL Locked Mode
            4. 26.1.4.3.6.4 SATA DPLL Idle-Bypass Mode
            5. 26.1.4.3.6.5 SATA DPLL MN-Bypass Mode
            6. 26.1.4.3.6.6 SATA DPLL Error Conditions
          7. 26.1.4.3.7 SATA PLL Controller Functions
            1. 26.1.4.3.7.1 SATA PLL Controller Register Access
            2. 26.1.4.3.7.2 SATA DPLL Clock Programming Sequence
            3. 26.1.4.3.7.3 SATA DPLL Recommended Values
      5. 26.1.5 SATA PHY Subsystem Low-Level Programming Model
    2. 26.2 USB3_PHY Subsystem
      1. 26.2.1 USB3_PHY Subsystem Overview
      2. 26.2.2 USB3_PHY Subsystem Environment
        1. 26.2.2.1 USB3_PHY I/O Signals
      3. 26.2.3 USB3_PHY Subsystem Integration
      4. 26.2.4 USB3_PHY Subsystem Functional Description
        1. 26.2.4.1 Super-Speed USB PLL Controller L4 Interface Adapter Functional Description
        2. 26.2.4.2 USB3_PHY Serializer and Deserializer Functional Descriptions
          1. 26.2.4.2.1 USB3_PHY Module Resets
            1. 26.2.4.2.1.1 Hardware Reset
            2. 26.2.4.2.1.2 Software Reset
          2. 26.2.4.2.2 USB3_PHY Subsystem Clocking
            1. 26.2.4.2.2.1 USB3_PHY Subsystem Input Clocks
            2. 26.2.4.2.2.2 USB3_PHY Subsystem Output Clocks
          3. 26.2.4.2.3 USB3_PHY Power Management
            1. 26.2.4.2.3.1 USB3_PHY Power-Up/-Down Sequences
            2. 26.2.4.2.3.2 USB3_PHY Low-Power Modes
            3. 26.2.4.2.3.3 Clock Gating
          4. 26.2.4.2.4 USB3_PHY Hardware Requests
        3. 26.2.4.3 USB3_PHY Clock Generator Subsystem Functional Description
          1. 26.2.4.3.1 USB3_PHY DPLL Clock Generator Overview
          2. 26.2.4.3.2 USB3_PHY DPLL Clock Generator Reset
          3. 26.2.4.3.3 USB3_PHY DPLL Low-Power Modes
          4. 26.2.4.3.4 USB3_PHY DPLL Clocks Configuration
            1. 26.2.4.3.4.1 USB3_PHY DPLL Input Clock Control
            2. 26.2.4.3.4.2 USB3_PHY DPLL Output Clock Configuration
              1. 26.2.4.3.4.2.1 USB3_PHY DPLL Output Clock Gating
          5. 26.2.4.3.5 USB3_PHY DPLL Subsystem Architecture
          6. 26.2.4.3.6 USB3_PHY DPLL Clock Generator Modes and State Transitions
            1. 26.2.4.3.6.1 USB3_PHY Clock Generator Power Up
            2. 26.2.4.3.6.2 USB3_PHY DPLL Sequences
            3. 26.2.4.3.6.3 USB3_PHY DPLL Locked Mode
            4. 26.2.4.3.6.4 USB3_PHY DPLL Idle-Bypass Mode
            5. 26.2.4.3.6.5 USB3_PHY DPLL MN-Bypass Mode
            6. 26.2.4.3.6.6 USB3_PHY DPLL Error Conditions
          7. 26.2.4.3.7 USB3_PHY PLL Controller Functions
            1. 26.2.4.3.7.1 USB3_PHY PLL Controller Register Access
            2. 26.2.4.3.7.2 3783
            3. 26.2.4.3.7.3 USB3_PHY DPLL Clock Programming Sequence
            4. 26.2.4.3.7.4 USB3_PHY DPLL Recommended Values
      5. 26.2.5 USB3_PHY Subsystem Low-Level Programming Model
    3. 26.3 USB3 PHY and SATA PHY Register Manual
      1. 26.3.1 USB3 PHY and SATA PHY Instance Summary
      2. 26.3.2 USB3_PHY_RX Registers
        1. 26.3.2.1 USB3_PHY_RX Register Summary
        2. 26.3.2.2 USB3_PHY_RX Register Description
      3. 26.3.3 USB3_PHY_TX Registers
        1. 26.3.3.1 USB3_PHY_TX Register Summary
        2. 26.3.3.2 USB3_PHY_TX Register Description
      4. 26.3.4 SATA_PHY_RX Registers
        1. 26.3.4.1 SATA_PHY_RX Register Summary
        2. 26.3.4.2 SATA_PHY_RX Register Description
      5. 26.3.5 SATA_PHY_TX Registers
        1. 26.3.5.1 SATA_PHY_TX Register Summary
        2. 26.3.5.2 SATA_PHY_TX Register Description
      6. 26.3.6 DPLLCTRL Registers
        1. 26.3.6.1 DPLLCTRL Register Summary
        2. 26.3.6.2 DPLLCTRL Register Description
    4. 26.4 PCIe PHY Subsystem
      1. 26.4.1 PCIe PHY Subsystem Overview
        1. 26.4.1.1 PCIe PHY Subsystem Key Features
      2. 26.4.2 PCIe PHY Subsystem Environment
        1. 26.4.2.1 PCIe PHY I/O Signals
      3. 26.4.3 PCIe Shared PHY Subsystem Integration
      4. 26.4.4 PCIe PHY Subsystem Functional Description
        1. 26.4.4.1 PCIe PHY Subsystem Block Diagram
        2. 26.4.4.2 OCP2SCP Functional Description
          1. 26.4.4.2.1 OCP2SCP Reset
            1. 26.4.4.2.1.1 Hardware Reset
            2. 26.4.4.2.1.2 Software Reset
          2. 26.4.4.2.2 OCP2SCP Power Management
            1. 26.4.4.2.2.1 Idle Mode
            2. 26.4.4.2.2.2 Clock Gating
          3. 26.4.4.2.3 OCP2SCP Timing Registers
        3. 26.4.4.3 PCIe PHY Serializer and Deserializer Functional Descriptions
          1. 26.4.4.3.1 PCIe PHY Module Resets
            1. 26.4.4.3.1.1 Hardware Reset
            2. 26.4.4.3.1.2 Software Reset
          2. 26.4.4.3.2 PCIe PHY Subsystem Clocking
            1. 26.4.4.3.2.1 PCIe PHY Subsystem Input Clocks
            2. 26.4.4.3.2.2 PCIe PHY Subsystem Output Clocks
          3. 26.4.4.3.3 PCIe PHY Power Management
            1. 26.4.4.3.3.1 PCIe PHY Power-Up/-Down Sequences
            2. 26.4.4.3.3.2 PCIe PHY Low-Power Modes
            3. 26.4.4.3.3.3 Clock Gating
          4. 26.4.4.3.4 PCIe PHY Hardware Requests
        4. 26.4.4.4 PCIe PHY Clock Generator Subsystem Functional Description
          1. 26.4.4.4.1 PCIe PHY DPLL Clock Generator
            1. 26.4.4.4.1.1 PCIe PHY DPLL Clock Generator Overview
            2. 26.4.4.4.1.2 PCIe PHY DPLL Clock Generator Reset
            3. 26.4.4.4.1.3 PCIe PHY DPLL Low-Power Modes
            4. 26.4.4.4.1.4 PCIe PHY DPLL Clocks Configuration
              1. 26.4.4.4.1.4.1 PCIe PHY DPLL Input Clock Control
              2. 26.4.4.4.1.4.2 PCIe PHY DPLL Output Clock Configuration
                1. 26.4.4.4.1.4.2.1 PCIe PHY DPLL Output Clock Gating
            5. 26.4.4.4.1.5 PCIe PHY DPLL Subsystem Architecture
            6. 26.4.4.4.1.6 PCIe PHY DPLL Clock Generator Modes and State Transitions
              1. 26.4.4.4.1.6.1 PCIe PHY Clock Generator Power Up
              2. 26.4.4.4.1.6.2 PCIe PHY DPLL Sequences
              3. 26.4.4.4.1.6.3 PCIe PHY DPLL Locked Mode
              4. 26.4.4.4.1.6.4 PCIe PHY DPLL Idle-Bypass Mode
              5. 26.4.4.4.1.6.5 PCIe PHY DPLL Low Power Stop Mode
              6. 26.4.4.4.1.6.6 PCIe PHY DPLL Clock Programming Sequence
              7. 26.4.4.4.1.6.7 PCIe PHY DPLL Recommended Values
          2. 26.4.4.4.2 PCIe PHY APLL Clock Generator
            1. 26.4.4.4.2.1 PCIe PHY APLL Clock Generator Overview
            2. 26.4.4.4.2.2 PCIe PHY APLL Clock Generator Reset
            3. 26.4.4.4.2.3 PCIe PHY APLL Low-Power Mode
            4. 26.4.4.4.2.4 PCIe PHY APLL Clocks Configuration
              1. 26.4.4.4.2.4.1 PCIe PHY APLL Input Clock Control
              2. 26.4.4.4.2.4.2 PCIe PHY APLL Output Clock Configuration
                1. 26.4.4.4.2.4.2.1 PCIe PHY APLL Output Clock Gating
            5. 26.4.4.4.2.5 PCIe PHY APLL Subsystem Architecture
            6. 26.4.4.4.2.6 PCIe PHY APLL Clock Generator Modes and State Transitions
              1. 26.4.4.4.2.6.1 PCIe PHY APLL Clock Generator Power Up
              2. 26.4.4.4.2.6.2 PCIe PHY APLL Sequences
              3. 26.4.4.4.2.6.3 PCIe PHY APLL Locked Mode
          3. 26.4.4.4.3 ACSPCIE reference clock buffer
      5. 26.4.5 PCIePHY Subsystem Low-Level Programming Model
      6. 26.4.6 PCIe PHY Subsystem Register Manual
        1. 26.4.6.1 PCIe PHY Instance Summary
          1. 26.4.6.1.1 PCIe_PHY_RX Registers
            1. 26.4.6.1.1.1 PCIe_PHY_RX Register Summary
            2. 26.4.6.1.1.2 PCIe_PHY_RX Register Description
          2. 26.4.6.1.2 PCIe_PHY_TX Registers
            1. 26.4.6.1.2.1 PCIe_PHY_TX Register Summary
            2. 26.4.6.1.2.2 PCIe_PHY_TX Register Description
          3. 26.4.6.1.3 OCP2SCP Registers
            1. 26.4.6.1.3.1 OCP2SCP Register Summary
            2. 26.4.6.1.3.2 OCP2SCP Register Description
  29. 27General-Purpose Interface
    1. 27.1 General-Purpose Interface Overview
    2. 27.2 General-Purpose Interface Environment
      1. 27.2.1 General-Purpose Interface as a Keyboard Interface
      2. 27.2.2 General-Purpose Interface Signals
    3. 27.3 General-Purpose Interface Integration
    4. 27.4 General-Purpose Interface Functional Description
      1. 27.4.1 General-Purpose Interface Block Diagram
      2. 27.4.2 General-Purpose Interface Interrupt and Wake-Up Features
        1. 27.4.2.1 Synchronous Path: Interrupt Request Generation
        2. 27.4.2.2 Asynchronous Path: Wake-Up Request Generation
        3. 27.4.2.3 Wake-Up Event Conditions During Transition To/From IDLE State
        4. 27.4.2.4 Interrupt (or Wake-Up) Line Release
      3. 27.4.3 General-Purpose Interface Clock Configuration
        1. 27.4.3.1 Clocking
      4. 27.4.4 General-Purpose Interface Hardware and Software Reset
      5. 27.4.5 General-Purpose Interface Power Management
        1. 27.4.5.1 Power Domain
        2. 27.4.5.2 Power Management
          1. 27.4.5.2.1 Idle Scheme
          2. 27.4.5.2.2 Operating Modes
          3. 27.4.5.2.3 System Power Management and Wakeup
          4. 27.4.5.2.4 Module Power Saving
      6. 27.4.6 General-Purpose Interface Interrupt and Wake-Up Requests
        1. 27.4.6.1 Interrupt Requests Generation
        2. 27.4.6.2 Wake-Up Requests Generation
      7. 27.4.7 General-Purpose Interface Channels Description
      8. 27.4.8 General-Purpose Interface Data Input/Output Capabilities
      9. 27.4.9 General-Purpose Interface Set-and-Clear Protocol
        1. 27.4.9.1 Description
        2. 27.4.9.2 Clear Instruction
          1. 27.4.9.2.1 Clear Register Addresses
          2. 27.4.9.2.2 Clear Instruction Example
        3. 27.4.9.3 Set Instruction
          1. 27.4.9.3.1 Set Register Addresses
          2. 27.4.9.3.2 Set Instruction Example
    5. 27.5 General-Purpose Interface Programming Guide
      1. 27.5.1 General-Purpose Interface Low-Level Programming Models
        1. 27.5.1.1 Global Initialization
          1. 27.5.1.1.1 Surrounding Modules Global Initialization
          2. 27.5.1.1.2 General-Purpose Interface Module Global Initialization
        2. 27.5.1.2 General-Purpose Interface Operational Modes Configuration
          1. 27.5.1.2.1 General-Purpose Interface Read Input Register
          2. 27.5.1.2.2 General-Purpose Interface Set Bit Function
          3. 27.5.1.2.3 General-Purpose Interface Clear Bit Function
    6. 27.6 General-Purpose Interface Register Manual
      1. 27.6.1 General-Purpose Interface Instance Summary
      2. 27.6.2 General-Purpose Interface Registers
        1. 27.6.2.1 General-Purpose Interface Register Summary
        2. 27.6.2.2 General-Purpose Interface Register Description
  30. 28Keyboard Controller
    1. 28.1 Keyboard Controller Overview
    2. 28.2 Keyboard Controller Environment
      1. 28.2.1 Keyboard Controller Functions/Modes
      2. 28.2.2 Keyboard Controller Signals
      3. 28.2.3 Protocols and Data Formats
    3. 28.3 Keyboard Controller Integration
    4. 28.4 Keyboard Controller Functional Description
      1. 28.4.1 Keyboard Controller Block Diagram
      2. 28.4.2 Keyboard Controller Software Reset
      3. 28.4.3 Keyboard Controller Power Management
      4. 28.4.4 Keyboard Controller Interrupt Requests
      5. 28.4.5 Keyboard Controller Software Mode
      6. 28.4.6 Keyboard Controller Hardware Decoding Modes
        1. 28.4.6.1 Functional Modes
        2. 28.4.6.2 Keyboard Controller Timer
        3. 28.4.6.3 State-Machine Status
        4. 28.4.6.4 Keyboard Controller Interrupt Generation
          1. 28.4.6.4.1 Interrupt-Generation Scheme
          2. 28.4.6.4.2 Keyboard Buffer and Missed Events (Overrun Feature)
      7. 28.4.7 Keyboard Controller Key Coding Registers
      8. 28.4.8 Keyboard Controller Register Access
        1. 28.4.8.1 Write Registers Access
        2. 28.4.8.2 Read Registers Access
    5. 28.5 Keyboard Controller Programming Guide
      1. 28.5.1 Keyboard Controller Low-Level Programming Models
        1. 28.5.1.1 Global Initialization
          1. 28.5.1.1.1 Surrounding Modules Global Initialization
          2. 28.5.1.1.2 Keyboard Controller Global Initialization
            1. 28.5.1.1.2.1 Main Sequence – Keyboard Controller Global Initialization
        2. 28.5.1.2 Operational Modes Configuration
          1. 28.5.1.2.1 Keyboard Controller in Hardware Decoding Mode (Default Mode)
            1. 28.5.1.2.1.1 Main Sequence – Keyboard Controller Hardware Mode
          2. 28.5.1.2.2 Keyboard Controller Software Scanning Mode
            1. 28.5.1.2.2.1 Main Sequence – Keyboard Controller Software Mode
          3. 28.5.1.2.3 Using the Timer
          4. 28.5.1.2.4 State-Machine Status Register
        3. 28.5.1.3 Keyboard Controller Events Servicing
    6. 28.6 Keyboard Controller Register Manual
      1. 28.6.1 Keyboard Controller Instance Summary
      2. 28.6.2 Keyboard Controller Registers
        1. 28.6.2.1 Keyboard Controller Register Summary
        2. 28.6.2.2 Keyboard Controller Register Description
  31. 29Pulse-Width Modulation Subsystem
    1. 29.1 PWM Subsystem Resources
      1. 29.1.1 PWMSS Overview
        1. 29.1.1.1 PWMSS Key Features
        2. 29.1.1.2 PWMSS Unsupported Fetaures
      2. 29.1.2 PWMSS Environment
        1. 29.1.2.1 PWMSS I/O Interface
      3. 29.1.3 PWMSS Integration
        1. 29.1.3.1 PWMSS Module Interfaces Implementation
          1. 29.1.3.1.1 Device Specific PWMSS Features
          2. 29.1.3.1.2 Daisy-Chain Connectivity between PWMSS Modules
          3. 29.1.3.1.3 eHRPWM Modules Time Base Clock Gating
      4. 29.1.4 PWMSS Subsystem Power, Reset and Clock Configuration
        1. 29.1.4.1 PWMSS Local Clock Management
        2. 29.1.4.2 PWMSS Modules Local Clock Gating
        3. 29.1.4.3 PWMSS Software Reset
      5. 29.1.5 PWMSS_CFG Register Manual
        1. 29.1.5.1 PWMSS_CFG Instance Summary
        2. 29.1.5.2 PWMSS_CFG Registers
          1. 29.1.5.2.1 PWMSS_CFG Register Summary
          2. 29.1.5.2.2 PWMSS_CFG Register Description
    2. 29.2 Enhanced PWM (ePWM) Module
    3. 29.3 Enhanced Capture (eCAP) Module
    4. 29.4 Enhanced Quadrature Encoder Pulse (eQEP) Module
  32. 30Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem
    1. 30.1  PRU-ICSS Overview
      1. 30.1.1 PRU-ICSS Key Features
    2. 30.2  PRU-ICSS Environment
      1. 30.2.1 PRU-ICSS I/O Interface
    3. 30.3  PRU-ICSS Integration
    4. 30.4  PRU-ICSS Level Resources Functional Description
      1. 30.4.1 PRU-ICSS Reset Management
      2. 30.4.2 PRU-ICSS Power and Clock Management
        1. 30.4.2.1 PRU-ICSS Idle and Standby States
        2. 30.4.2.2 Module Clock Configurations at PRU-ICSS Top Level
      3. 30.4.3 Other PRU-ICSS Module Functional Registers at Subsystem Level
      4. 30.4.4 PRU-ICSS Memory Maps
        1. 30.4.4.1 PRU-ICSS Local Memory Map
          1. 30.4.4.1.1 PRU-ICSS Local Instruction Memory Map
          2. 30.4.4.1.2 PRU-ICSS Local Data Memory Map
        2. 30.4.4.2 PRU-ICSS Global Memory Map
      5. 30.4.5 PRUSS_CFG Register Manual
        1. 30.4.5.1 PRUSS_CFG Instance Summary
        2. 30.4.5.2 PRUSS_CFG Registers
          1. 30.4.5.2.1 PRUSS_CFG Register Summary
          2. 30.4.5.2.2 PRUSS_CFG Register Description
    5. 30.5  PRU-ICSS PRU Cores
    6. 30.6  PRU-ICSS Local Interrupt Controller
      1. 30.6.1 PRU-ICSS Interrupt Controller Overview
      2. 30.6.2 PRU-ICSS Interrupt Controller Functional Description
        1. 30.6.2.1 PRU-ICSS Interrupt Controller System Events
        2. 30.6.2.2 PRU-ICSS Interrupt Controller System Events Flow
          1. 30.6.2.2.1 PRU-ICSS Interrupt Processing
            1. 30.6.2.2.1.1 PRU-ICSS Interrupt Enabling
          2. 30.6.2.2.2 PRU-ICSS Interrupt Status Checking
          3. 30.6.2.2.3 PRU-ICSS Interrupt Channel Mapping
            1. 30.6.2.2.3.1 PRU-ICSS Host Interrupt Mapping
            2. 30.6.2.2.3.2 PRU-ICSS Interrupt Prioritization
          4. 30.6.2.2.4 PRU-ICSS Interrupt Nesting
          5. 30.6.2.2.5 PRU-ICSS Interrupt Status Clearing
        3. 30.6.2.3 PRU-ICSS Interrupt Disabling
      3. 30.6.3 PRU-ICSS Interrupt Controller Basic Programming Model
      4. 30.6.4 PRU-ICSS Interrupt Requests Mapping
      5. 30.6.5 PRU-ICSS Interrupt Controller Register Manual
        1. 30.6.5.1 PRUSS_INTC Instance Summary
        2. 30.6.5.2 PRUSS_INTC Registers
          1. 30.6.5.2.1 PRUSS_INTC Register Summary
          2. 30.6.5.2.2 PRUSS_INTC Register Description
    7. 30.7  PRU-ICSS UART Module
      1. 30.7.1 PRU-ICSS UART Module Overview
        1. 30.7.1.1 Purpose of the PRU-ICSS integrated UART Peripheral
        2. 30.7.1.2 PRU-ICSS UART Key Features
          1. 30.7.1.2.1 PRU-ICSS UART Module Industry Standard Compliance Statement
      2. 30.7.2 PRU-ICSS UART Environment
        1. 30.7.2.1 PRU-ICSS UART Pin Multiplexing
        2. 30.7.2.2 PRU-ICSS UART Signal Descriptions
        3. 30.7.2.3 PRU-ICSS UART Data Format and Protocol Description
          1. 30.7.2.3.1 PRU-ICSS UART Transmission Protocol
          2. 30.7.2.3.2 PRU-ICSS UART Reception Protocol
          3. 30.7.2.3.3 PRU-ICSS UART Data Format
            1. 30.7.2.3.3.1 Frame Formatting
        4. 30.7.2.4 PRU-ICSS UART Clock Generation and Control
      3. 30.7.3 PRU-ICSS UART Module Functional Description
        1. 30.7.3.1 PRU-ICSS UART Functional Block Diagram
        2. 30.7.3.2 PRU-ICSS UART Reset Considerations
          1. 30.7.3.2.1 PRU-ICSS UART Software Reset Considerations
          2. 30.7.3.2.2 PRU-ICSS UART Hardware Reset Considerations
        3. 30.7.3.3 PRU-ICSS UART Power Management
        4. 30.7.3.4 PRU-ICSS UART Interrupt Support
          1. 30.7.3.4.1 PRU-ICSS UART Interrupt Events and Requests
          2. 30.7.3.4.2 PRU-ICSS UART Interrupt Multiplexing
          3. 30.7.3.4.3 4060
        5. 30.7.3.5 4061
        6. 30.7.3.6 PRU-ICSS UART DMA Event Support
        7. 30.7.3.7 PRU-ICSS UART Operations
          1. 30.7.3.7.1 PRU-ICSS UART Transmission
          2. 30.7.3.7.2 PRU-ICSS UART Reception
          3. 30.7.3.7.3 PRU-ICSS UART FIFO Modes
            1. 30.7.3.7.3.1 PRU-ICSS UART FIFO Interrupt Mode
            2. 30.7.3.7.3.2 PRU-ICSS UART FIFO Poll Mode
          4. 30.7.3.7.4 PRU-ICSS UART Autoflow Control
            1. 30.7.3.7.4.1 PRU-ICSS UART Signal UART0_RTS Behavior
            2. 30.7.3.7.4.2 PRU-ICSS UART Signal PRUSS_UART0_CTS Behavior
          5. 30.7.3.7.5 PRU-ICSS UART Loopback Control
        8. 30.7.3.8 PRU-ICSS UART Initialization
        9. 30.7.3.9 PRU-ICSS UART Exception Processing
          1. 30.7.3.9.1 PRU-ICSS UART Divisor Latch Not Programmed
          2. 30.7.3.9.2 Changing Operating Mode During Busy Serial Communication of PRU-ICSS UART
      4. 30.7.4 PRUSS_UART Register Manual
        1. 30.7.4.1 PRUSS_UART Instance Summary
        2. 30.7.4.2 PRUSS_UART Registers
          1. 30.7.4.2.1 PRUSS_UART Register Summary
          2. 30.7.4.2.2 PRUSS_UART Register Description
    8. 30.8  PRU-ICSS eCAP Module
      1. 30.8.1 4083
      2. 30.8.2 PRU-ICSS eCAP Functional Description
      3. 30.8.3 PRUSS_ECAP Register Manual
        1. 30.8.3.1 PRUSS_ECAP Instance Summary
        2. 30.8.3.2 PRUSS_ECAP Registers
          1. 30.8.3.2.1 PRUSS_ECAP Register Summary
          2. 30.8.3.2.2 PRUSS_ECAP Register Description
    9. 30.9  PRU-ICSS MII RT Module
      1. 30.9.1 Introduction
        1. 30.9.1.1 Features
        2. 30.9.1.2 Unsupported Features
        3. 30.9.1.3 Block Diagram
      2. 30.9.2 Functional Description
        1. 30.9.2.1 Data Path Configuration
          1. 30.9.2.1.1 Auto-forward with Optional PRU Snoop
          2. 30.9.2.1.2 8- or 16-bit Processing with On-the-Fly Modifications
          3. 30.9.2.1.3 32-byte Double Buffer or Ping-Pong Processing
        2. 30.9.2.2 Definition and Terms
          1. 30.9.2.2.1 Data Frame Structure
          2. 30.9.2.2.2 PRU R30 and R31
          3. 30.9.2.2.3 RX and TX L1 FIFO Data Movement
          4. 30.9.2.2.4 CRC Computation
            1. 30.9.2.2.4.1 Receive CRC Computation
            2. 30.9.2.2.4.2 Transmit CRC Computation
        3. 30.9.2.3 RX MII Interface
          1. 30.9.2.3.1 RX MII Submodule Overview
            1. 30.9.2.3.1.1 Receive Data Latch
              1. 30.9.2.3.1.1.1 Start of Frame Detection
              2. 30.9.2.3.1.1.2 CRC Error Detection
              3. 30.9.2.3.1.1.3 RX Error Detection and Action
            2. 30.9.2.3.1.2 RX Data Path Options to PRU
              1. 30.9.2.3.1.2.1 RX MII Port → RX L1 FIFO → PRU
              2. 30.9.2.3.1.2.2 RX MII Port → RX L1 FIFO → RX L2 Buffer → PRU
        4. 30.9.2.4 TX MII Interface
          1. 30.9.2.4.1 TX Data Path Options to TX L1 FIFO
            1. 30.9.2.4.1.1 PRU → TX L1 FIFO → TX MII Port
            2. 30.9.2.4.1.2 RX L1 FIFO → TX L1 FIFO → TX MII Port
        5. 30.9.2.5 PRU R31 Command Interface
        6. 30.9.2.6 Other Configuration Options
          1. 30.9.2.6.1 Nibble and Byte Order
          2. 30.9.2.6.2 Preamble Source
          3. 30.9.2.6.3 PRU and MII Port Multiplexer
            1. 30.9.2.6.3.1 Receive Multiplexer
            2. 30.9.2.6.3.2 Transmit Multiplexer
          4. 30.9.2.6.4 RX L2 Scratch Pad
      3. 30.9.3 PRU-ICSS MII RT Module Register Manual
        1. 30.9.3.1 PRUSS_MII_RT Instance Summary
        2. 30.9.3.2 PRUSS_MII_RT Registers
          1. 30.9.3.2.1 PRUSS_MII_RT Register Summary
          2. 30.9.3.2.2 PRUSS_MII_RT Register Description
    10. 30.10 PRU-ICSS MII MDIO Module
      1. 30.10.1 PRU-ICSS MII MDIO Overview
      2. 30.10.2 PRU-ICSS MII MDIO Functional Description
        1. 30.10.2.1 MII MDIO Management Interface Frame Formats
        2. 30.10.2.2 PRU-ICSS MII MDIO Interractions
        3. 30.10.2.3 PRU-ICSS MII MDIO Interrupts
      3. 30.10.3 PRU-ICSS MII MDIO Receive/Transmit Frame Host Software Interface
      4. 30.10.4 PRU-ICSS MII MDIO Module Register Manual
        1. 30.10.4.1 PRUSS_MII_MDIO Instance Summary
        2. 30.10.4.2 PRUSS_MII_MDIO Registers
          1. 30.10.4.2.1 PRUSS_MII_MDIO Register Summary
          2. 30.10.4.2.2 PRUSS_MII_MDIO Register Description
    11. 30.11 PRU-ICSS Industrial Ethernet Peripheral (IEP)
      1. 30.11.1 PRU-ICSS IEP Overview
      2. 30.11.2 PRU-ICSS IEP Functional Description
        1. 30.11.2.1 PRU-ICSS IEP Clock Generation
        2. 30.11.2.2 PRU-ICSS Industrial Ethernet Timer
          1. 30.11.2.2.1 PRU-ICSS Industrial Ethernet Timer Features
          2. 30.11.2.2.2 Industrial Ethernet Mapping
          3. 30.11.2.2.3 PRU-ICSS Industrial Ethernet Timer Basic Programming Sequence
        3. 30.11.2.3 PRU-ICSS IEP Sync0/Sync1 Signals Generation
          1. 30.11.2.3.1 PRU-ICSS IEP Sync0/Sync1 Features
          2. 30.11.2.3.2 PRU-ICSS IEP Sync0/Sync1 Generation Modes
        4. 30.11.2.4 PRU-ICSS Industrial Ethernet WatchDog
          1. 30.11.2.4.1 Features
        5. 30.11.2.5 PRU-ICSS Industrial Ethernet Digital IOs
          1. 30.11.2.5.1 Features
          2. 30.11.2.5.2 4160
          3. 30.11.2.5.3 DIGIO Block Diagrams
          4. 30.11.2.5.4 Basic Programming Model
      3. 30.11.3 PRUSS_IEP Register Manual
        1. 30.11.3.1 PRUSS_IEP Instance Summary
        2. 30.11.3.2 PRUSS_IEP Registers
          1. 30.11.3.2.1 PRUSS_IEP Register Summary
          2. 30.11.3.2.2 PRUSS_IEP Register Description
  33. 31Viterbi-Decoder Coprocessor
  34. 32Audio Tracking Logic
  35. 33Initialization
    1. 33.1 Initialization Overview
      1. 33.1.1 Terminology
      2. 33.1.2 Initialization Process
    2. 33.2 Preinitialization
      1. 33.2.1 Power Requirements
      2. 33.2.2 Boot Device Conditions
      3. 33.2.3 Clock, Reset, and Control
        1. 33.2.3.1 Overview
        2. 33.2.3.2 Clocking Scheme
        3. 33.2.3.3 Reset Configuration
          1. 33.2.3.3.1 ON/OFF Interconnect and Power-On-Reset
          2. 33.2.3.3.2 Warm Reset
          3. 33.2.3.3.3 Peripheral Reset by GPIO
          4. 33.2.3.3.4 Warm Reset Impact on GPIOs
        4. 33.2.3.4 PMIC Control
        5. 33.2.3.5 PMIC Request Signals
      4. 33.2.4 Sysboot Configuration
        1. 33.2.4.1 GPMC Configuration for XIP/NAND
        2. 33.2.4.2 System Clock Speed Selection
        3. 33.2.4.3 QSPI Redundant SBL Images Offset
        4. 33.2.4.4 Booting Device Order Selection
        5. 33.2.4.5 4192
        6. 33.2.4.6 Boot Peripheral Pin Multiplexing
    3. 33.3 Device Initialization by ROM Code
      1. 33.3.1 Booting Overview
        1. 33.3.1.1 Booting Types
        2. 33.3.1.2 ROM Code Architecture
      2. 33.3.2 Memory Maps
        1. 33.3.2.1 ROM Memory Map
        2. 33.3.2.2 RAM Memory Map
      3. 33.3.3 Overall Booting Sequence
      4. 33.3.4 Startup and Configuration
        1. 33.3.4.1 Startup
        2. 33.3.4.2 Control Module Configuration
        3. 33.3.4.3 PRCM Module Mode Configuration
        4. 33.3.4.4 Clocking Configuration
        5. 33.3.4.5 Booting Device List Setup
      5. 33.3.5 Peripheral Booting
        1. 33.3.5.1 Description
        2. 33.3.5.2 Initialization Phase for UART Boot
        3. 33.3.5.3 Initialization Phase for USB Boot
          1. 33.3.5.3.1 Initialization Procedure
          2. 33.3.5.3.2 SATA Peripheral Device Flashing over USB Interface
          3. 33.3.5.3.3 USB Driver Descriptors
          4. 33.3.5.3.4 4215
          5. 33.3.5.3.5 USB Customized Vendor and Product IDs
          6. 33.3.5.3.6 USB Driver Functionality
      6. 33.3.6 Fast External Booting
        1. 33.3.6.1 Overview
        2. 33.3.6.2 Fast External Booting Procedure
      7. 33.3.7 Memory Booting
        1. 33.3.7.1 Overview
        2. 33.3.7.2 Non-XIP Memory
        3. 33.3.7.3 XIP Memory
          1. 33.3.7.3.1 GPMC Initialization
        4. 33.3.7.4 NAND
          1. 33.3.7.4.1 Initialization and NAND Detection
          2. 33.3.7.4.2 NAND Read Sector Procedure
        5. 33.3.7.5 SPI/QSPI Flash Devices
        6. 33.3.7.6 eMMC Memories and SD Cards
          1. 33.3.7.6.1 eMMC Memories
            1. 33.3.7.6.1.1 System Conditions and Limitations
            2. 33.3.7.6.1.2 eMMC Memory Connection
          2. 33.3.7.6.2 SD Cards
            1. 33.3.7.6.2.1 System Conditions and Limitations
            2. 33.3.7.6.2.2 SD Card Connection
            3. 33.3.7.6.2.3 Booting Procedure
            4. 33.3.7.6.2.4 eMMC Partitions Handling in Alternative Boot Operation Mode
              1. 33.3.7.6.2.4.1 eMMC Devices Preflashing
              2. 33.3.7.6.2.4.2 eMMC Device State After ROM Code Execution
              3. 33.3.7.6.2.4.3 Consideration on device Global Warm Reset
              4. 33.3.7.6.2.4.4 Booting Image Size
              5. 33.3.7.6.2.4.5 Booting Image Layout
          3. 33.3.7.6.3 Initialization and Detection
          4. 33.3.7.6.4 Read Sector Procedure
          5. 33.3.7.6.5 File System Handling
            1. 33.3.7.6.5.1 MBR and FAT File System
        7. 33.3.7.7 SATA Device Boot Operation
          1. 33.3.7.7.1 SATA Booting Overview
          2. 33.3.7.7.2 SATA Power-Up Initialization Sequence
          3. 33.3.7.7.3 System Conditions and Limitations for SATA Boot
          4. 33.3.7.7.4 SATA Read Sector Procedure in FAT Mode
      8. 33.3.8 Image Format
        1. 33.3.8.1 Overview
        2. 33.3.8.2 Configuration Header
          1. 33.3.8.2.1 CHSETTINGS Item
          2. 33.3.8.2.2 CHFLASH Item
          3. 33.3.8.2.3 CHMMCSD Item
          4. 33.3.8.2.4 CHQSPI Item
        3. 33.3.8.3 GP Header
        4. 33.3.8.4 Image Execution
      9. 33.3.9 Tracing
    4. 33.4 Services for HLOS Support
      1. 33.4.1 Hypervisor
      2. 33.4.2 Caches Maintenance
      3. 33.4.3 CP15 Registers
      4. 33.4.4 Wakeup Generator
      5. 33.4.5 Arm Timer
      6. 33.4.6 MReq Domain
  36. 34On-Chip Debug Support
    1. 34.1  Introduction
      1. 34.1.1 Key Features
    2. 34.2  Debug Interfaces
      1. 34.2.1 IEEE1149.1
      2. 34.2.2 Debug (Trace) Port
      3. 34.2.3 Trace Connector and Board Layout Considerations
    3. 34.3  Debugger Connection
      1. 34.3.1 ICEPick Module
      2. 34.3.2 ICEPick Boot Modes
        1. 34.3.2.1 Default Boot Mode
        2. 34.3.2.2 Wait-In-Reset
      3. 34.3.3 Dynamic TAP Insertion
        1. 34.3.3.1 ICEPick Secondary TAPs
    4. 34.4  Primary Debug Support
      1. 34.4.1 Processor Native Debug Support
        1. 34.4.1.1 Cortex-A15 Processor
        2. 34.4.1.2 Cortex-M4 Processor
        3. 34.4.1.3 DSP C66x
        4. 34.4.1.4 IVA Arm968
        5. 34.4.1.5 PRU
      2. 34.4.2 Cross-Triggering
        1. 34.4.2.1 SoC-Level Cross-Triggering
        2. 34.4.2.2 Cross-Triggering With External Device
      3. 34.4.3 Suspend
        1. 34.4.3.1 Debug Aware Peripherals and Host Processors
    5. 34.5  Real-Time Debug
      1. 34.5.1 Real-Time Debug Events
        1. 34.5.1.1 Emulation Interrupts
    6. 34.6  Power, Reset, and Clock Management Debug Support
      1. 34.6.1 Power and Clock Management
        1. 34.6.1.1 Power and Clock Control Override From Debugger
          1. 34.6.1.1.1 Debugger Directives
            1. 34.6.1.1.1.1 FORCEACTIVE Debugger Directive
            2. 34.6.1.1.1.2 INHIBITSLEEP Debugger Directive
          2. 34.6.1.1.2 Intrusive Debug Model
        2. 34.6.1.2 Debug Across Power Transition
          1. 34.6.1.2.1 Nonintrusive Debug Model
          2. 34.6.1.2.2 Debug Context Save and Restore
            1. 34.6.1.2.2.1 Debug Context Save
            2. 34.6.1.2.2.2 Debug Context Restore
      2. 34.6.2 Reset Management
        1. 34.6.2.1 Debugger Directives
          1. 34.6.2.1.1 Assert Reset
          2. 34.6.2.1.2 Block Reset
          3. 34.6.2.1.3 Wait-In-Reset
    7. 34.7  Performance Monitoring
      1. 34.7.1 MPU Subsystem Performance Monitoring
        1. 34.7.1.1 Performance Monitoring Unit
        2. 34.7.1.2 L2 Cache Controller
      2. 34.7.2 IPU Subsystem Performance Monitoring
        1. 34.7.2.1 Subsystem Counter Timer Module
        2. 34.7.2.2 Cache Events
      3. 34.7.3 DSP Subsystem Performance Monitoring
        1. 34.7.3.1 Advanced Event Triggering
    8. 34.8  MPU Memory Adaptor (MPU_MA) Watchpoint
    9. 34.9  Processor Trace
      1. 34.9.1 Cortex-A15 Processor Trace
      2. 34.9.2 DSP Processor Trace
      3. 34.9.3 Trace Export
        1. 34.9.3.1 Trace Exported to External Trace Receiver
        2. 34.9.3.2 Trace Captured Into On-Chip Trace Buffer
        3. 34.9.3.3 Trace Exported Through USB
    10. 34.10 System Instrumentation
      1. 34.10.1 MIPI STM (CT_STM)
      2. 34.10.2 System Trace Export
        1. 34.10.2.1 CT_STM ATB Export
        2. 34.10.2.2 Trace Streams Interleaving
      3. 34.10.3 Software Instrumentation
        1. 34.10.3.1 MPU Software Instrumentation
        2. 34.10.3.2 SoC Software Instrumentation
      4. 34.10.4 OCP Watchpoint
        1. 34.10.4.1 OCP Target Traffic Monitoring
        2. 34.10.4.2 Messages Triggered from System Events
        3. 34.10.4.3 DMA Transfer Profiling
      5. 34.10.5 IVA Pipeline
      6. 34.10.6 L3 NOC Statistics Collector
        1. 34.10.6.1 L3 Target Load Monitoring
        2. 34.10.6.2 L3 Master Latency Monitoring
          1. 34.10.6.2.1  SC_LAT0 Configuration
          2. 34.10.6.2.2  SC_LAT1 Configuration
          3. 34.10.6.2.3  SC_LAT2 Configuration
          4. 34.10.6.2.4  SC_LAT3 Configuration
          5. 34.10.6.2.5  SC_LAT4 Configuration
          6. 34.10.6.2.6  SC_LAT5 Configuration
          7. 34.10.6.2.7  SC_LAT6 Configuration
          8. 34.10.6.2.8  SC_LAT7 Configuration
          9. 34.10.6.2.9  SC_LAT8 Configuration
          10. 34.10.6.2.10 Statistics Collector Alarm Mode
          11. 34.10.6.2.11 Statistics Collector Suspend Mode
      7. 34.10.7 PM Instrumentation
      8. 34.10.8 CM Instrumentation
      9. 34.10.9 Master-ID Encoding
        1. 34.10.9.1 Software Masters
        2. 34.10.9.2 Hardware Masters
    11. 34.11 Concurrent Debug Modes
    12. 34.12 DRM Register Manual
      1. 34.12.1 DRM Instance Summary
      2. 34.12.2 DRM Registers
        1. 34.12.2.1 DRM Register Summary
        2. 34.12.2.2 DRM Register Description
  37. 35Glossary
  38. 36Revision History

Enhanced PWM (ePWM) Module

29.2.1 ePWM Overview

An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand and use. The ePWM unit described here addresses these requirements by allocating all needed timing and control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided; instead, the ePWM is built up from smaller single channel modules with separate resources and that can operate together as required to form a system. This modular approach results in an orthogonal architecture and provides a more transparent view of the peripheral structure, helping users to understand its operation quickly.

As already described in Section 29.1.3, the letter x within a signal or module name is used to indicate a generic ePWM instance on a device. For example, output signals EPWMxA and EPWMxB refer to the output signals from the ePWMx instance. Thus, EPWM1A and EPWM1B belong to ePWM1, EPWM2A and EPWM2B belong to ePWM2, etc.

The ePWM module represents one complete PWM channel composed of two PWM outputs: EPWMxA and EPWMxB. A given ePWM module functionality can be extended with the so called High-Resolution Pulse Width modulator. Refer to the Section 29.1.3, to determine which ePWM instances include the HRPWM feature. The HRPWM functionalities are described in Section 29.2.45. Each ePWM module is indicated by a numerical value starting with 1. For example ePWM1 is the first instance, the ePWM2 is the second instance in the device, etc. The ePWMx indicates any instance.

As also described in Section 29.1.3.1.2, the ePWM modules are chained together via a clock synchronization scheme that allows them to operate as a single system when required. Additionally, the PWMSSn integration allows this synchronization scheme to be extended to the capture peripheral modules (eCAP). The number of modules is device-dependent and based on target application needs. Modules can also operate stand-alone.

Each ePWM module supports the following features:

  • Dedicated 16-bit time-base counter with period and frequency control
  • Two PWM outputs (EPWMxA and EPWMxB) that can be used in the following configurations:
    • Two independent PWM outputs with single-edge operation
    • Two independent PWM outputs with dual-edge symmetric operation
    • One independent PWM output with dual-edge asymmetric operation
  • Asynchronous override control of PWM signals through software.
  • Programmable phase-control support for lag or lead operation relative to other ePWM modules.
  • Hardware-locked (synchronized) phase relationship on a cycle-by-cycle basis.
  • Dead-band generation with independent rising and falling edge delay control.
  • Programmable trip zone allocation of both cycle-by-cycle trip and one-shot trip on fault conditions.
  • A trip condition can force either high, low, or high-impedance state logic levels at PWM outputs.
  • Programmable event prescaling minimizes CPU overhead on interrupts.
  • PWM chopping by high-frequency carrier signal, useful for pulse transformer gate drives.

Each ePWM module is connected to the input/output signals shown in Figure 29-5. The signals are described in detail in subsequent sections.

The order in which the ePWM modules are connected may differ from what is shown in Figure 29-5. See Section 29.1.3.1.2 for the actual synchronization scheme implemented in the device. Each ePWM module consists of seven submodules and is connected within a system via the signals shown in Figure 29-6.

AM571x Multiple ePWM ModulesFigure 29-5 Multiple ePWM Modules
AM571x Submodules and Signal Connections for an ePWM ModuleFigure 29-6 Submodules and Signal Connections for an ePWM Module

Figure 29-7 shows more internal details of a single ePWM module. The main signals used by the ePWM module are:

  • PWM output signals (EPWMxA and EPWMxB). The PWM output signals are made available external to the device through the GPIO peripheral described in the system control and interrupts guide for your device.
  • Trip-zone signals ( TZ0 to TZk-1). These k input signals alert the ePWM module of an external fault condition. Each module on a device can be configured to either use or ignore any of the trip-zone signals. The trip-zone signal can be configured as an asynchronous input through the GPIO peripheral.
    Note:

    According to the device ePWMx (where x= 1to 3) trip zone i/f implementation, the number of input signals implemented is k=1, which means ONLY the ePWMx TZ0 input is available at chip level. Refer to the Section 29.1.3, for details on trip zone input implementation.

  • Time-base synchronization input (EPWMxSYNCI) and output (EPWMxSYNCO) signals. The synchronization signals daisy chain the ePWM modules together. Each module can be configured to either use or ignore its synchronization input. The clock synchronization input and output signal are brought out to pins only for ePWM1 (ePWM module #1). The synchronization output for ePWM3 (EPWM3SYNCO) is also connected to the eCAP1SYNCI of the first enhanced capture module (eCAP1).
  • Peripheral Bus. The peripheral bus is 32-bits wide and allows both 16-bit and 32-bit writes to the ePWM register file.

Figure 29-7 also shows the key internal submodule interconnect signals. Each submodule is described in Section 29.2.2.

AM571x ePWM Submodules and Critical Internal Signal InterconnectsFigure 29-7 ePWM Submodules and Critical Internal Signal Interconnects

29.2.2 ePWM Functional Description

Seven submodules are included in each ePWM peripheral. There are some instances that include a high-resolution submodule that allows more precise control of the PWM outputs. Each of these submodules performs specific tasks that can be configured by software.

29.2.3 ePWM Submodule Features

Table 29-15 lists the eight key submodules together with a list of their main configuration parameters. For example, if you need to adjust or control the duty cycle of a PWM waveform, then you should see the counter-compare submodule in Section 29.2.14 for relevant details.

Table 29-15 Submodule Configuration Parameters
SubmoduleConfiguration Parameter or Option
Time-base (TB)
  • Scale the time-base clock (TBCLK) relative to the system clock (SYSCLKOUT).
  • Configure the PWM time-base counter (TBCNT) frequency or period.
  • Set the mode for the time-base counter:
    • count-up mode: used for asymmetric PWM
    • count-down mode: used for asymmetric PWM
    • count-up-and-down mode: used for symmetric PWM
  • Configure the time-base phase relative to another ePWM module.
  • Synchronize the time-base counter between modules through hardware or software.
  • Configure the direction (up or down) of the time-base counter after a synchronization event.
  • Configure how the time-base counter will behave when the device is halted by an emulator.
  • Specify the source for the synchronization output of the ePWM module:
    • Synchronization input signal
    • Time-base counter equal to zero
    • Time-base counter equal to counter-compare B (CMPB)
    • No output synchronization signal generated.
Counter-compare (CC)
  • Specify the PWM duty cycle for output EPWMxA and/or output EPWMxB
  • Specify the time at which switching events occur on the EPWMxA or EPWMxB output
Action-qualifier (AQ)
  • Specify the type of action taken when a time-base or counter-compare submodule event occurs:
    • No action taken
    • Output EPWMxA and/or EPWMxB switched high
    • Output EPWMxA and/or EPWMxB switched low
    • Output EPWMxA and/or EPWMxB toggled
  • Force the PWM output state through software control
  • Configure and control the PWM dead-band through software
Dead-band (DB)
  • Control of traditional complementary dead-band relationship between upper and lower switches
  • Specify the output rising-edge-delay value
  • Specify the output falling-edge delay value
  • Bypass the dead-band module entirely. In this case the PWM waveform is passed through without modification.
PWM-chopper (PC)
  • Create a chopping (carrier) frequency.
  • Pulse width of the first pulse in the chopped pulse train.
  • Duty cycle of the second and subsequent pulses.
  • Bypass the PWM-chopper module entirely. In this case the PWM waveform is passed through without modification.
Trip-zone (TZ)
  • Configure the ePWM module to react to one, all, or none of the trip-zone pins.
  • Specify the tripping action taken when a fault occurs:
    • Force EPWMxA and/or EPWMxB high
    • Force EPWMxA and/or EPWMxB low
    • Force EPWMxA and/or EPWMxB to a high-impedance state
    • Configure EPWMxA and/or EPWMxB to ignore any trip condition.
  • Configure how often the ePWM will react to the trip-zone pin:
    • One-shot
    • Cycle-by-cycle
  • Enable the trip-zone to initiate an interrupt.
  • Bypass the trip-zone module entirely.

Event-trigger (ET)

  • Enable the ePWM events that will trigger an interrupt.
  • Specify the rate at which events cause triggers (every occurrence or every second or third occurrence)
  • Poll, set, or clear event flags
High-Resolution PWM (HRPWM)
  • Enable extended time resolution capabilities
  • Configure finer time granularity control or edge positioning
Note:

The system clock - SYSCLKOUT is the ePWM functional clock derived from the PWMSSn gateable interface and functional clock PWMSSn_GICLK, described in the Section 29.1.3.

Code examples are provided in the remainder of this chapter that show how to implement various ePWM module configurations. These examples use the constant definitions shown in Section 29.2.4.

29.2.4 Constant Definitions Used in the ePWM Code Examples

// TBCTL (Time-Base Control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// TBCNT MODE bits
#define         TB_COUNT_UP        0x0
#define         TB_COUNT_DOWN      0x1
#define         TB_COUNT_UPDOWN    0x2
#define         TB_FREEZE          0x3
// PHSEN bit
#define         TB_DISABLE         0x0
#define         TB_ENABLE          0x1
// PRDLD bit
#define         TB_SHADOW          0x0
#define         TB_IMMEDIATE       0x1
// SYNCOSEL bits
#define         TB_SYNC_IN         0x0
#define         TB_CTR_ZERO        0x1
#define         TB_CTR_CMPB        0x2
#define         TB_SYNC_DISABLE    0x3
// HSPCLKDIV and CLKDIV bits
#define         TB_DIV1            0x0
#define         TB_DIV2            0x1
#define         TB_DIV4            0x2
// PHSDIR bit
#define         TB_DOWN            0x0
#define         TB_UP              0x1
// CMPCTL (Compare Control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// LOADAMODE and LOADBMODE bits
#define         CC_CTR_ZERO        0x0
#define         CC_CTR_PRD         0x1
#define         CC_CTR_ZERO_PRD    0x2
#define         CC_LD_DISABLE      0x3
// SHDWAMODE and SHDWBMODE bits
#define         CC_SHADOW          0x0
#define         CC_IMMEDIATE       0x1
// AQCTLA and AQCTLB (Action-qualifier Control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =  
// ZRO, PRD, CAU, CAD, CBU, CBD bits
#define         AQ_NO_ACTION       0x0
#define         AQ_CLEAR           0x1
#define         AQ_SET             0x2
#define         AQ_TOGGLE          0x3
// DBCTL (Dead-Band Control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// MODE bits
#define         DB_DISABLE         0x0
#define         DBA_ENABLE         0x1
#define         DBB_ENABLE         0x2
#define DB_FULL_ENABLE 0x3
// POLSEL bits
#define         DB_ACTV_HI         0x0
#define         DB_ACTV_LOC        0x1
#define         DB_ACTV_HIC        0x2
#define         DB_ACTV_LO         0x3
// PCCTL (chopper control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// CHPEN bit
#define         CHP_ENABLE         0x0
#define CHP_DISABLE 0x1
// CHPFREQ bits
#define         CHP_DIV1           0x0
#define         CHP_DIV2           0x1
#define         CHP_DIV3           0x2
#define         CHP_DIV4           0x3
#define         CHP_DIV5           0x4
#define         CHP_DIV6           0x5
#define         CHP_DIV7           0x6
#define         CHP_DIV8           0x7
// CHPDUTY bits
#define         CHP1_8TH           0x0
#define         CHP2_8TH           0x1
#define         CHP3_8TH           0x2
#define         CHP4_8TH           0x3
#define         CHP5_8TH           0x4
#define         CHP6_8TH           0x5
#define         CHP7_8TH           0x6
// TZSEL (Trip-zone Select)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// CBCn and OSHTn bits
#define         TZ_ENABLE          0x0
#define         TZ_DISABLE         0x1
// TZCTL (Trip-zone Control)
// = = = = = = = = = = = = = = = = = = = = = = = = = =
// TZA and TZB bits
#define         TZ_HIZ             0x0
#define         TZ_FORCE_HI        0x1
#define         TZ_FORCE_LO        0x2
#define         TZ_DISABLE         0x3
// ETSEL (Event-trigger Select)
// = = = = = = = = = = = = = = = = = = = = = = = = = = 
// INTSEL, SOCASEL, SOCBSEL bits
#define         ET_CTR_ZERO        0x1
#define         ET_CTR_PRD         0x2
#define         ET_CTRU_CMPA       0x4
#define         ET_CTRD_CMPA       0x5
#define         ET_CTRU_CMPB       0x6
#define         ET_CTRD_CMPB       0x7
// ETPS (Event-trigger Prescale)
// = = = = = = = = = = = = = = = = = = = = = = = = = = 
// INTPRD, SOCAPRD, SOCBPRD bits
#define         ET_DISABLE         0x0
#define         ET_1ST             0x1
#define         ET_2ND             0x2
#define         ET_3RD             0x3

29.2.5 Proper ePWM Interrupt Initialization Procedure

When the ePWM peripheral clock is enabled it may be possible that interrupt flags may be set due to spurious events due to the ePWM registers not being properly initialized. The proper procedure for initializing the ePWM peripheral is:

  1. Disable global interrupts (CPU INTM flag)
  2. Disable ePWM interrupts
  3. Initialize peripheral registers
  4. Clear any spurious ePWM flags
  5. Enable ePWM interrupts
  6. Enable global interrupts

29.2.6 ePWM Time-Base (TB) Submodule

Each ePWM module has its own time-base submodule that determines all of the event timing for the ePWM module. Built-in synchronization logic allows the time-base of multiple ePWM modules (ePWMx) to work together as a single system. Figure 29-8 illustrates the time-base module's place within the ePWM.

AM571x ePWM Time-Base Submodule Block DiagramFigure 29-8 ePWM Time-Base Submodule Block Diagram

29.2.7 Purpose of the ePWM Time-Base Submodule

You can configure the time-base submodule for the following:

  • Specify the ePWMx time-base counter (TBCNT) frequency or period in the EPWM_TBCNT register to control how often events occur.
  • Manage time-base synchronization with other ePWMx modules.
  • Maintain a phase relationship with other ePWMx modules.
  • Set the time-base counter to count-up, count-down, or count-up-and-down mode.
  • Generate the following events:
    • TBCNT = PRD: Time-base counter (EPWM_TBCNT register) equal to the specified period in EPWM_TBPRD register (i.e. TBCNT = TBPRD) .
    • TBCNT = 0: Time-base counter equal to zero (TBCNT = 0000h).
  • Configure the rate of the time-base clock; a prescaled version of the CPU system clock (SYSCLKOUT). This allows the time-base counter to increment/decrement at a slower rate.

29.2.8 Controlling and Monitoring the ePWM Time-Base Submodule

Table 29-16 lists the registers used to control and monitor the time-base submodule.

Table 29-16 ePWM Time-Base Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_TBCTLTime-Base Control Register0hNo
EPWM_TBSTSTime-Base Status Register2hNo
HRPWM_TBPHSHRHRPWM extension Phase Register (1)4hNo
EPWM_TBPHSTime-Base Phase Register6hNo
EPWM_TBCNTTime-Base Counter Register8hNo
EPWM_TBPRDTime-Base Period RegisterAhYes
This register is available only on ePWM instances that include the high-resolution extension (HRPWM). On ePWM modules that do not include the HRPWM, this location is reserved. See Section 29.1.3 to determine which ePWM instances include this feature.

Figure 29-9 shows the critical signals and registers of the time-base submodule. Table 29-17 provides descriptions of the key signals associated with the time-base submodule.

AM571x ePWM Time-Base Submodule Signals and RegistersFigure 29-9 ePWM Time-Base Submodule Signals and Registers
Table 29-17 ePWM Key Time-Base Signals
SignalDescription
EPWMxSYNCITime-base synchronization input.
Input pulse used to synchronize the time-base counter with the counter of ePWM module earlier in the synchronization chain. An ePWM peripheral can be configured to use or ignore this signal. For the first ePWM module (EPWM1) this signal comes from a device pin . For subsequent ePWM modules this signal is passed from another ePWM peripheral. For example, EPWM2SYNCI is generated by the ePWM1 peripheral and the EPWM3SYNCI is generated by ePWM2. See Section 29.2.11 for information on the synchronization order of a particular device.
EPWMxSYNCOTime-base synchronization output.
This output pulse is used to synchronize the counter of an ePWM module later in the synchronization chain. The ePWM module generates this signal from one of three event sources:
  1. EPWMxSYNCI (Synchronization input pulse)
  2. TBCNT = 0: The time-base counter (register EPWM_TBCNT) equal to zero (TBCNT = 0000h).
  3. TBCNT = CMPB: The time-base counter (register EPWM_TBCNT) equal to the counter-compare B register - EPWM_CMPB (i.e. bitfield TBCNT = bitfield CMPB) .
TBCNT = PRDTime-base counter equal to the specified period.
This signal is generated whenever the counter value is equal to the active period register value. That is when TBCNT = TBPRD.
TBCNT = 0Time-base counter equal to zero.
This signal is generated whenever the counter value is zero. That is when TBCNT equals 0000h.
TBCNT = CMPBTime-base counter equal to active counter-compare B register (TBCNT = CMPB).
This event is generated by the counter-compare submodule and used by the synchronization out logic.
CTR_dirTime-base counter direction.
Indicates the current direction of the ePWM's time-base counter. This signal is high when the counter is increasing and low when it is decreasing.
CTR_maxTime-base counter equal max value. (TBCNT = FFFFh)
Generated event when the EPWM_TBCNT value reaches its maximum value. This signal is only used only as a status bit.
TBCLKTime-base clock.
This is a prescaled version of the system clock - SYSCLKOUT(1) and is used by all submodules within the ePWMn. This clock determines the rate at which time-base counter increments or decrements.
The system clock - SYSCLKOUT is the ePWM functional clock derived from the PWMSSn gateable interface and functional clock PWMSSn_GICLK, described in Section 29.1.3.

29.2.9 Calculating PWM Period and Frequency

The frequency of PWM events is controlled by the time-base period (EPWM_TBPRD) register and the mode of the time-base counter. Figure 29-10 shows the period (Tpwm) and frequency (Fpwm) relationships for the up-count, down-count, and up-down-count time-base counter modes when when the period is set to 4 (EPWM_TBPRD register bitfield TBPRD = 0x4). The time increment for each step is defined by the time-base clock (TBCLK) which is a prescaled version of the system clock (SYSCLKOUT).

The time-base counter has three modes of operation selected by the time-base control register (EPWM_TBCTL):

  • Up-Down-Count Mode: In up-down-count mode, the time-base counter starts from zero and increments until the period (TBPRD) value is reached. When the period value is reached, the time-base counter then decrements until it reaches zero. At this point the counter repeats the pattern and begins to increment.
  • Up-Count Mode: In this mode, the time-base counter starts from zero and increments until it reaches the value in the period register (TBPRD). When the period value is reached, the time-base counter resets to zero and begins to increment once again.
  • Down-Count Mode: In down-count mode, the time-base counter starts from the period (TBPRD) value and decrements until it reaches zero. When it reaches zero, the time-base counter is reset to the period value and it begins to decrement once again.

AM571x ePWM Time-Base Frequency and PeriodFigure 29-10 ePWM Time-Base Frequency and Period

29.2.10 ePWM Time-Base Period Shadow Register

The time-base period register (EPWM_TBPRD) has a shadow register. Shadowing allows the register update to be synchronized with the hardware. The following definitions are used to describe all shadow registers in the ePWM module:

  • Active Register: The active register controls the hardware and is responsible for actions that the hardware causes or invokes.
  • Shadow Register: The shadow register buffers or provides a temporary holding location for the active register. It has no direct effect on any control hardware. At a strategic point in time the shadow register's content is transferred to the active register. This prevents corruption or spurious operation due to the register being asynchronously modified by software.

The memory address of the shadow period register is the same as the active register. Which register is written to or read from is determined by the EPWM_TBCTL[3] PRDLD bit. This bit enables and disables the EPWM_TBPRD shadow register as follows:

  • Time-Base Period Shadow Mode: The EPWM_TBPRD shadow register is enabled when EPWM_TBCTL[3] PRDLD = 0. Reads from and writes to the EPWM_TBPRD memory address go to the shadow register. The shadow register contents are transferred to the active register (EPWM_TBPRD (Active) ← EPWM_TBPRD (shadow)) when the time-base counter (register (EPWM_TBCNT) equals zero (TBCNT = 0000h). By default the EPWM_TBPRD shadow register is enabled.
  • Time-Base Period Immediate Load Mode: If immediate load mode is selected (EPWM_TBCTL[3] PRDLD = 1), then a read from or a write to the TBPRD memory address goes directly to the active register.

29.2.11 ePWM Time-Base Counter Synchronization

A time-base synchronization scheme connects all of the ePWM modules on a device. Each ePWM module has a synchronization input (EPWMxSYNCI) and a synchronization output (EPWMxSYNCO). The input synchronization for the first instance (ePWM1) comes from an external pin . For the device ePWM environment sync pin details refer to the Section 29.1.2. The possible synchronization connections for the remaining ePWM modules is shown in Figure 29-11.

AM571x ePWM Time-Base Counter Synchronization Scheme 1Figure 29-11 ePWM Time-Base Counter Synchronization Scheme 1

Each ePWM module can be configured to use or ignore the synchronization input. If the EPWM_TBCTL[2] PHSEN bit is set, then the time-base counter (TBCNT) of the ePWM module (register EPWM_TBCNT) will be automatically loaded with the phase register (EPWM_TBPHS) contents when one of the following conditions occur:

  • EPWMxSYNCI: Synchronization Input Pulse: The value of the phase register is loaded into the counter register when an input synchronization pulse is detected (EPWM_TBPHSEPWM_TBCNT). This operation occurs on the next valid time-base clock (TBCLK) edge.
  • Software Forced Synchronization Pulse: Writing a 1 to the EPWM_TBCTL[6] SWFSYNC control bit invokes a software forced synchronization. This pulse is ORed with the synchronization input signal, and therefore has the same effect as a pulse on EPWMxSYNCI.

This feature enables the ePWM module to be automatically synchronized to the time base of another ePWM module. Lead or lag phase control can be added to the waveforms generated by different ePWM modules to synchronize them. In up-down-count mode, the EPWM_TBCTL[13] PHSDIR bit configures the direction of the time-base counter immediately after a synchronization event. The new direction is independent of the direction prior to the synchronization event. The TBPHS bit is ignored in count-up or count-down modes. See Figure 29-12 through Figure 29-15 for examples.

Clearing the EPWM_TBCTL[2] PHSEN bit configures the ePWM to ignore the synchronization input pulse. The synchronization pulse can still be allowed to flow-through to the EPWMxSYNCO and be used to synchronize other ePWM modules. In this way, you can set up a master time-base (for example, ePWM1) and downstream modules (ePWM2 - ePWMx) may elect to run in synchronization with the master.

29.2.12 Phase Locking the Time-Base Clocks of Multiple ePWM Modules

As already described in the Section 29.1.3.1.3, PWMSS1_TBCLKEN through PWMSS3_TBCLKEN bits in the CTRL_CORE_CONTROL_IO_2 register of the device Core Control Module can be used to individually control or globally synchronize the time-base clocks of all enabled ePWM modules on a device. When all PWMSSN_TBCLKEN (where n = 1 to 3) bits are set to 0b0, the time-base clocks of all ePWMx (where x = 1 to 3) modules are stopped (default). When all PWMSSn_TBCLKEN bits are simultaneously set in SW to 0b1, all ePWMx modules (x = 1 to 3) time-base clocks are started with the rising edge of TBCLK aligned. For perfectly synchronized TBCLKs, the prescaler bits in the EPWM_TBCTL register of each ePWM module must be set identically. The proper procedure for enabling the ePWM clocks is as follows:

  1. Enable the ePWM module clocks.
  2. Set PWMSSn_TBCLKEN = 0. This will stop the time-base clock within any enabled ePWMx module.
  3. Configure the prescaler values and desired ePWM modes per each involved ePWMx.
  4. Simultaneously set bits PWMSSn_TBCLKEN to 0b1 (where n = 1 to 3) 1.

29.2.13 ePWM Time-Base Counter Modes and Timing Waveforms

The time-base counter operates in one of four modes:

  • Up-count mode which is asymmetrical.
  • Down-count mode which is asymmetrical.
  • Up-down-count which is symmetrical.
  • Frozen where the time-base counter is held constant at the current value.

To illustrate the operation of the first three modes, Figure 29-12 to Figure 29-15 show when events are generated and how the time-base responds to an EPWMxSYNCI signal.

AM571x ePWM Time-Base Up-Count Mode WaveformsFigure 29-12 ePWM Time-Base Up-Count Mode Waveforms
AM571x ePWM Time-Base Down-Count Mode WaveformsFigure 29-13 ePWM Time-Base Down-Count Mode Waveforms
AM571x ePWM Time-Base Up-Down-Count Waveforms, EPWM_TBCTL[13] PHSDIR = 0 Count Down on Synchronization EventFigure 29-14 ePWM Time-Base Up-Down-Count Waveforms, EPWM_TBCTL[13] PHSDIR = 0 Count Down on
Synchronization Event
AM571x ePWM Time-Base Up-Down Count Waveforms, EPWM_TBCTL[13] PHSDIR = 1 Count Up on Synchronization EventFigure 29-15 ePWM Time-Base Up-Down Count Waveforms, EPWM_TBCTL[13] PHSDIR = 1 Count Up on
Synchronization Event

29.2.14 ePWM Counter-Compare (CC) Submodule

Figure 29-16 illustrates the counter-compare submodule within the ePWM. Figure 29-17 shows the basic structure of the counter-compare submodule.

AM571x ePWM Counter-Compare SubmoduleFigure 29-16 ePWM Counter-Compare Submodule
AM571x ePWM Counter-Compare Submodule Signals and RegistersFigure 29-17 ePWM Counter-Compare Submodule Signals and Registers

29.2.15 Purpose of the ePWM Counter-Compare Submodule

The counter-compare submodule takes as input the time-base counter value. This value is continuously compared to the counter-compare A (EPWM_CMPA) and counter-compare B (EPWM_CMPB) registers. When the time-base counter is equal to one of the compare registers, the counter-compare unit generates an appropriate event.

The counter-compare submodule:

  • Generates events based on programmable time stamps using the EPWM_CMPA and EPWM_CMPB registers
    • TBCNT = CMPA: Time-base counter equals counter-compare A register (TBCNT = CMPA).
    • TBCNT = CMPB: Time-base counter equals counter-compare B register (TBCNT = CMPB)
  • Controls the PWM duty cycle if the action-qualifier submodule is configured appropriately
  • Shadows new compare values to prevent corruption or glitches during the active PWM cycle

29.2.16 Controlling and Monitoring the ePWM Counter-Compare Submodule

Table 29-18 lists the registers used to control and monitor the counter-compare submodule. Table 29-19 lists the key signals associated with the counter-compare submodule.

Table 29-18 ePWM Counter-Compare Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_CMPCTLCounter-Compare Control Register.EhNo
HRPWM_CMPAHRHRPWM Counter-Compare A Extension Register (1)10hYes
EPWM_CMPACounter-Compare A Register12hYes
EPWM_CMPBCounter-Compare B Register14hYes
This register is available only on ePWM modules with the high-resolution extension (HRPWM). On ePWM modules that do not include the HRPWM, this location is reserved. See Section 29.1.3 to determine which ePWM instances include this feature.
Table 29-19 ePWM Counter-Compare Submodule Key Signals
SignalDescription of EventRegister Bitfields Compared
TBCNT = CMPATime-base counter equal to the active counter-compare A valueTBCNT = CMPA
TBCNT = CMPBTime-base counter equal to the active counter-compare B valueTBCNT = CMPB
TBCNT = PRDTime-base counter equal to the active period.
Used to load active counter-compare A and B registers from the shadow register
TBCNT = TBPRD
TBCNT = 0Time-base counter equal to zero.
Used to load active counter-compare A and B registers from the shadow register
TBCNT = 0000h

29.2.17 Operational Highlights for the ePWM Counter-Compare Submodule

The counter-compare submodule is responsible for generating two independent compare events based on two compare registers:

  1. TBCNT = CMPA: Time-base counter equal to counter-compare A register (EPWM_TBCNT = EPWM_CMPA).
  2. TBCNT = CMPB: Time-base counter equal to counter-compare B register (TBCNT = CMPB).

For up-count or down-count mode, each event occurs only once per cycle. For up-down-count mode each event occurs twice per cycle, if the compare value is between 0000h and TBPRD; and occurs once per cycle, if the compare value is equal to 0000h or equal to TBPRD. These events are fed into the action-qualifier submodule where they are qualified by the counter direction and converted into actions if enabled. Refer to Section 29.2.20 for more details.

The counter-compare registers EPWM_CMPA and EPWM_CMPB each have an associated shadow register. Shadowing provides a way to keep updates to the registers synchronized with the hardware. When shadowing is used, updates to the active registers only occurs at strategic points. This prevents corruption or spurious operation due to the register being asynchronously modified by software. The memory address of the active register and the shadow register is identical. Which register is written to or read from is determined by the EPWM_CMPCTL[4] SHDWAMODE and EPWM_CMPCTL[6] SHDWBMODE bits. These bits enable and disable the EPWM_CMPA shadow register and EPWM_CMPB shadow register respectively. The behavior of the two load modes is described below:

  • Shadow Mode: The shadow mode for the EPWM_CMPA is enabled by clearing the EPWM_CMPCTL[4] SHDWAMODE bit and the shadow register for CMPB is enabled by clearing the EPWM_CMPCTL[6] SHDWBMODE bit. Shadow mode is enabled by default for both EPWM_CMPA and EPWM_CMPB.

    If the shadow register is enabled then the content of the shadow register is transferred to the active register on one of the following events:

    • TBCNT = PRD: Time-base counter equal to the period (TBCNT = TBPRD).
    • TBCNT = 0: Time-base counter equal to zero (TBCNT = 0000h)
    • Both TBCNT = PRD and TBCNT = 0

    Which of these three events is specified by the EPWM_CMPCTL[1:0] LOADAMODE and EPWM_CMPCTL[3:2] LOADBMODE register bits. Only the active register contents are used by the counter-compare submodule to generate events to be sent to the action-qualifier.

  • Immediate Load Mode: If immediate load mode is selected (EPWM_TBCTL[4] SHDWAMODE = 1 or EPWM_TBCTL[6] SHDWBMODE = 1), then a read from or a write to the register will go directly to the active register.

29.2.18 ePWM Count Mode Timing Waveforms

The counter-compare module can generate compare events in all three count modes:

  • Up-count mode: used to generate an asymmetrical PWM waveform.
  • Down-count mode: used to generate an asymmetrical PWM waveform.
  • Up-down-count mode: used to generate a symmetrical PWM waveform.

To best illustrate the operation of the first three modes, the timing diagrams in Figure 29-18 to Figure 29-21 show when events are generated and how the EPWMxSYNCI signal interacts.

AM571x ePWM Counter-Compare Event Waveforms in Up-Count Mode
An EPWMxSYNCI external synchronization event can cause a discontinuity in the TBCNT count sequence. This can lead to a compare event being skipped. This skipping is considered normal operation and must be taken into account.
Figure 29-18 ePWM Counter-Compare Event Waveforms in Up-Count Mode
AM571x ePWM Counter-Compare Events in Down-Count ModeFigure 29-19 ePWM Counter-Compare Events in Down-Count Mode
AM571x ePWM Counter-Compare Events in Up-Down-Count Mode, EPWM_TBCTL[13] PHSDIR = 0 Count Down on Synchronization EventFigure 29-20 ePWM Counter-Compare Events in Up-Down-Count Mode, EPWM_TBCTL[13] PHSDIR = 0 Count Down on Synchronization Event
AM571x ePWM Counter-Compare Events in Up-Down-Count Mode, EPWM_TBCTL[13] PHSDIR = 1 Count Up on Synchronization EventFigure 29-21 ePWM Counter-Compare Events in Up-Down-Count Mode, EPWM_TBCTL[13] PHSDIR = 1 Count Up on Synchronization Event

29.2.19 ePWM Action-Qualifier (AQ) Submodule

Figure 29-22 shows the action-qualifier (AQ) submodule (see shaded block) in the ePWM system. The action-qualifier submodule has the most important role in waveform construction and PWM generation. It decides which events are converted into various action types, thereby producing the required switched waveforms at the EPWMxA and EPWMxB outputs.

AM571x ePWM Action-Qualifier SubmoduleFigure 29-22 ePWM Action-Qualifier Submodule

29.2.20 Purpose of the ePWM Action-Qualifier Submodule

The action-qualifier submodule is responsible for the following:

  • Qualifying and generating actions (set, clear, toggle) based on the following events:
    • TBCNT = PRD: Time-base counter equal to the period (TBCNT = TBPRD)
    • TBCNT = 0: Time-base counter equal to zero (TBCNT = 0000h)
    • TBCNT = CMPA: Time-base counter equal to the counter-compare A register (TBCNT = CMPA)
    • TBCNT = CMPB: Time-base counter equal to the counter-compare B register (TBCNT = CMPB)
  • Managing priority when these events occur concurrently
  • Providing independent control of events when the time-base counter is increasing and when it is decreasing.

29.2.21 Controlling and Monitoring the ePWM Action-Qualifier Submodule

Table 29-20 lists the registers used to control and monitor the action-qualifier submodule.

Table 29-20 Action-Qualifier Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_AQCTLAAction-Qualifier Control Register For Output A (EPWMxA)16hNo
EPWM_AQCTLBAction-Qualifier Control Register For Output B (EPWMxB)18hNo
EPWM_AQSFRCAction-Qualifier Software Force Register1AhNo
EPWM_AQCSFRCAction-Qualifier Continuous Software Force1ChYes

The action-qualifier submodule is based on event-driven logic. It can be thought of as a programmable cross switch with events at the input and actions at the output, all of which are software controlled via the set of registers shown in Figure 29-23. The possible input events are summarized again in Table 29-21.

AM571x ePWM Action-Qualifier Submodule Inputs and OutputsFigure 29-23 ePWM Action-Qualifier Submodule Inputs and Outputs
Table 29-21 ePWM Action-Qualifier Submodule Possible Input Events
SignalDescriptionRegister Bitfield Compared
TBCNT = PRDTime-base counter equal to the period valueTBCNT = TBPRD
TBCNT = 0Time-base counter equal to zeroTBCNT = 0000h
TBCNT = CMPATime-base counter equal to the counter-compare ATBCNT = CMPA
TBCNT = CMPBTime-base counter equal to the counter-compare BTBCNT = CMPB
Software forced eventAsynchronous event initiated by software

The software forced action is a useful asynchronous event. This control is handled by registers EPWM_AQSFRC and EPWM_AQCSFRC.

The action-qualifier submodule controls how the two outputs EPWMxA and EPWMxB behave when a particular event occurs. The event inputs to the action-qualifier submodule are further qualified by the counter direction (up or down). This allows for independent action on outputs on both the count-up and count-down phases.

The possible actions imposed on outputs EPWMxA and EPWMxB are:

  • Set High: Set output EPWMxA or EPWMxB to a high level.
  • Clear Low: Set output EPWMxA or EPWMxB to a low level.
  • Toggle: If EPWMxA or EPWMxB is currently pulled high, then pull the output low. If EPWMxA or EPWMxB is currently pulled low, then pull the output high.
  • Do Nothing: Keep outputs EPWMxA and EPWMxB at same level as currently set. Although the "Do Nothing" option prevents an event from causing an action on the EPWMxA and EPWMxB outputs, this event can still trigger interrupts. See the event-trigger submodule description in Section 29.2.41 for details.

Actions are specified independently for either output (EPWMxA or EPWMxB). Any or all events can be configured to generate actions on a given output. For example, both TBCNT = CMPA and TBCNT = CMPB can operate on output EPWMxA. All qualifier actions are configured via the control registers found at the end of this section.

For clarity, the drawings in this chapter use a set of symbolic actions. These symbols are summarized in Figure 29-24. Each symbol represents an action as a marker in time. Some actions are fixed in time (zero and period) while the CMPA and CMPB actions are moveable and their time positions are programmed via the counter-compare A and B registers, respectively. To turn off or disable an action, use the "Do Nothing option"; it is the default at reset.

AM571x Possible Action-Qualifier Actions for EPWMxA and EPWMxB OutputsFigure 29-24 Possible Action-Qualifier Actions for EPWMxA and EPWMxB Outputs

29.2.22 ePWM Action-Qualifier Event Priority

It is possible for the ePWM action qualifier to receive more than one event at the same time. In this case events are assigned a priority by the hardware. The general rule is events occurring later in time have a higher priority and software forced events always have the highest priority. The event priority levels for up-down-count mode are shown in Table 29-22. A priority level of 1 is the highest priority and level 7 is the lowest. The priority changes slightly depending on the direction of TBCNT.

Table 29-22 ePWM Action-Qualifier Event Priority for Up-Down-Count Mode
Priority LevelEvent if TBCNT is Incrementing
TBCNT = 0 up to TBCNT = TBPRD
Event if TBCNT is Decrementing
TBCNT = TBPRD down to TBCNT = 1
1 (Highest)Software forced eventSoftware forced event
2Counter equals CMPB on up-count (CBU)Counter equals CMPB on down-count (CBD)
3Counter equals CMPA on up-count (CAU)Counter equals CMPA on down-count (CAD)
4Counter equals zeroCounter equals period (TBPRD in EPWM_TBPRD active register)
5Counter equals CMPB on down-count (CBD) (1)Counter equals CMPB on up-count (CBU) (1)
6 (Lowest)Counter equals CMPA on down-count (CAD) (1)Counter equals CMPA on up-count (CBU) (1)
To maintain symmetry for up-down-count mode, both up-events (CAU/CBU) and down-events (CAD/CBD) can be generated for TBPRD. Otherwise, up-events can occur only when the counter is incrementing and down-events can occur only when the counter is decrementing.

Table 29-23 shows the action-qualifier priority for up-count mode. In this case, the counter direction is always defined as up and thus down-count events will never be taken.

Table 29-23 ePWM Action-Qualifier Event Priority for Up-Count Mode
Priority LevelEvent
1 (Highest)Software forced event
2Counter equal to period (TBPRD)
3Counter equal to CMPB on up-count (CBU)
4Counter equal to CMPA on up-count (CAU)
5 (Lowest)Counter equal to Zero

Table 29-24 shows the action-qualifier priority for down-count mode. In this case, the counter direction is always defined as down and thus up-count events will never be taken.

Table 29-24 ePWM Action-Qualifier Event Priority for Down-Count Mode
Priority LevelEvent
1 (Highest)Software forced event
2Counter equal to Zero
3Counter equal to CMPB on down-count (CBD)
4Counter equal to CMPA on down-count (CAD)
5 (Lowest)Counter equal to period (TBPRD)

It is possible to set the compare value greater than the period. In this case the action will take place as shown in Table 29-25.

Table 29-25 Behavior if CMPA/CMPB is Greater than the Period
Counter ModeCompare on Up-Count Event CAU/CBUCompare on Down-Count Event CAU/CBU
Up-Count ModeIf CMPA/CMPB ≤ TBPRD period, then the event occurs on a compare match (TBCNT = CMPA or CMPB).Never occurs.
If CMPA/CMPB > TBPRD, then the event will not occur.
Down-Count ModeNever occurs.If CMPA/CMPB < TBPRD, the event will occur on a compare match (TBCNT = CMPA or CMPB).
If CMPA/CMPB ≥ TBPRD, the event will occur on a period match (TBCNT = TBPRD).
Up-Down-Count ModeIf CMPA/CMPB < TBPRD and the counter is incrementing, the event occurs on a compare match (TBCNT = CMPA or CMPB).If CMPA/CMPB < TBPRD and the counter is decrementing, the event occurs on a compare match (TBCNT = CMPA or CMPB).
If CMPA/CMPB is ≥ TBPRD, the event will occur on a period match (TBCNT = TBPRD).If CMPA/CMPB ≥ TBPRD, the event occurs on a period match (TBCNT = TBPRD).

29.2.23 Waveforms for Common ePWM Configurations

Note:

The waveforms in this chapter show the ePWMs behavior for a static compare register value. In a running system, the active compare registers (EPWM_CMPA and EPWM_CMPB) are typically updated from their respective shadow registers once every period. The user specifies when the update will take place; either when the time-base counter reaches zero or when the time-base counter reaches period. There are some cases when the action based on the new value can be delayed by one period or the action based on the old value can take effect for an extra period. Some PWM configurations avoid this situation. These include, but are not limited to, the following:

Use up-down-count mode to generate a symmetric PWM:

Use up-down-count mode to generate an asymmetric PWM:

  • To achieve 50%-0% asymmetric PWM use the following configuration: Load EPWM_CMPA/EPWM_CMPB on period and use the period action to clear the PWM and a compare-up action to set the PWM. Modulate the compare value from 0 to TBPRD to achieve 50%-0% PWM duty.

When using up-count mode to generate an asymmetric PWM:

  • To achieve 0-100% asymmetric PWM use the following configuration: Load EPWM_CMPA/EPWM_CMPB on TBPRD. Use the Zero action to set the PWM and a compare-up action to clear the PWM. Modulate the compare value from 0 to TBPRD+1 to achieve 0-100% PWM duty.

Figure 29-25 shows how a symmetric PWM waveform can be generated using the up-down-count mode of the TBCNT. In this mode 0%-100% DC modulation is achieved by using equal compare matches on the up count and down count portions of the waveform. In the example shown, CMPA is used to make the comparison. When the counter is incrementing the CMPA match will pull the PWM output high. Likewise, when the counter is decrementing the compare match will pull the PWM signal low. When CMPA = 0, the PWM signal is low for the entire period giving the 0% duty waveform. When EPWM_CMPA = EPWM_TBPRD, the PWM signal is high achieving 100% duty.

When using this configuration in practice, if you load CMPA/CMPB on zero, then use CMPA/CMPB values greater than or equal to 1. If you load CMPA/CMPB on period, then use CMPA/CMPB values less than or equal to TBPRD-1. This means there will always be a pulse of at least one TBCLK cycle in a PWM period which, when very short, tend to be ignored by the system.

AM571x ePWM Up-Down-Count Mode Symmetrical WaveformFigure 29-25 ePWM Up-Down-Count Mode Symmetrical Waveform

The PWM waveforms in Figure 29-26 through Figure 29-31 show some common action-qualifier configurations. Some conventions used in the figures are as follows:

  • TBPRD, CMPA, and CMPB refer to the value written in their respective registers (EPWM_TBPRD, EPWM_CMPA, and EPWM_CMPB). The active register, not the shadow register, is used by the hardware.
  • CMPx, refers to either CMPA or CMPB.
  • EPWMxA and EPWMxB refer to the output signals from ePWMx
  • Up-Down means Count-up-and-down mode, Up means up-count mode and Dwn means down-count mode
  • Sym = Symmetric, Asym = Asymmetric

Table 29-26 and Table 29-27 contains initialization and runtime register configurations for the waveforms in Figure 29-26.

AM571x Up, Single Edge Asymmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB—Active High
PWM period = (TBPRD + 1 ) × TTBCLK
Duty modulation for EPWMxA is set by CMPA, and is active high (that is, high time duty proportional to CMPA).
Duty modulation for EPWMxB is set by CMPB and is active high (that is, high time duty proportional to CMPB).
The "Do Nothing" actions ( X ) are shown for completeness, but will not be shown on subsequent diagrams.
Actions at zero and period, although appearing to occur concurrently, are actually separated by one TBCLK period. TBCNT wraps from period to 0000h.
Figure 29-26 Up, Single Edge Asymmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB—Active High
Table 29-26 EPWMx Initialization for Figure 29-26
RegisterBitfieldValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UP
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA350 (15Eh)Compare A = 350 TBCLK counts
EPWM_CMPBCMPB200 (C8h)Compare B = 200 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLAZROAQ_SET
CAUAQ_CLEAR
EPWM_AQCTLBZROAQ_SET
CBUAQ_CLEAR
Table 29-27 EPWMx Run Time Changes for Figure 29-26
RegisterBitfieldValueComments
EPWM_CMPACMPADuty1AAdjust duty for output EPWM1A
EPWM_CMPBCMPBDuty1BAdjust duty for output EPWM1B

Table 29-28 and Table 29-29 contains initialization and runtime register configurations for the waveforms in Figure 29-27.

AM571x Up, Single Edge Asymmetric Waveform With Independent Modulation on EPWMxA and EPWMxB—Active Low
PWM period = (TBPRD + 1 ) × TTBCLK
Duty modulation for EPWMxA is set by CMPA, and is active low (that is, the low time duty is proportional to CMPA).
Duty modulation for EPWMxB is set by CMPB and is active low (that is, the low time duty is proportional to CMPB).
The Do Nothing actions ( X ) are shown for completeness here, but will not be shown on subsequent diagrams.
Actions at zero and period, although appearing to occur concurrently, are actually separated by one TBCLK period. TBCNT wraps from period to 0000h.
Figure 29-27 Up, Single Edge Asymmetric Waveform With Independent Modulation on EPWMxA and EPWMxB—Active Low
Table 29-28 EPWMx Initialization for Figure 29-27
RegisterBitfiledValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UP
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA350 (15Eh)Compare A = 350 TBCLK counts
EPWM_CMPBCMPB200 (C8h)Compare B = 200 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLAPRDAQ_CLEAR
CAUAQ_SET
EPWM_AQCTLBPRDAQ_CLEAR
CBUAQ_SET
Table 29-29 EPWMx Run Time Changes for Figure 29-27
RegisterBitValueComments
EPWM_CMPACMPADuty1AAdjust duty for output EPWM1A
EPWM_CMPBCMPBDuty1BAdjust duty for output EPWM1B

Table 29-30 and Table 29-31 contains initialization and runtime register configurations for the waveforms Figure 29-28. Use the code in Section 29.2.4 to define the headers.

AM571x Up-Count, Pulse Placement Asymmetric Waveform With Independent Modulation on EPWMxA
PWM frequency = 1/( (TBPRD + 1 ) × TTBCLK )
Pulse can be placed anywhere within the PWM cycle (0000h - TBPRD)
High time duty proportional to (CMPB - CMPA)
EPWMxB can be used to generate a 50% duty square wave with frequency = 1/2 × ((TBPRD + 1) × TBCLK)
Figure 29-28 Up-Count, Pulse Placement Asymmetric Waveform With Independent Modulation on EPWMxA
Table 29-30 EPWMx Initialization for Figure 29-28
RegisterBitfieldValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UP
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA200 (C8h)Compare A = 200 TBCLK counts
EPWM_CMPBCMPB400 (190h)Compare B = 400 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLACAUAQ_SET
CBUAQ_CLEAR
EPWM_AQCTLBZROAQ_TOGGLE
Table 29-31 EPWMx Run Time Changes for Figure 29-28
RegisterBitfieldValueComments
EPWM_CMPACMPAEdgePosAAdjust duty for output EPWM1A
EPWM_CMPBCMPBEdgePosB

Table 29-32 and Table 29-33 contains initialization and runtime register configurations for the waveforms in Figure 29-29. Use the code in Section 29.2.4 to define the headers.

AM571x Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Active Low
PWM period = 2 x TBPRD × TTBCLK
Duty modulation for EPWMxA is set by CMPA, and is active low (that is, the low time duty is proportional to CMPA).
Duty modulation for EPWMxB is set by CMPB and is active low (that is, the low time duty is proportional to CMPB).
Outputs EPWMxA and EPWMxB can drive independent power switches
Figure 29-29 Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Active Low
Table 29-32 EPWMx Initialization for Figure 29-29
RegisterBitfieldValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UPDOWN
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA400 (190h)Compare A = 400 TBCLK counts
EPWM_CMPBCMPB500 (1F4h)Compare B = 500 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLACAUAQ_SET
CADAQ_CLEAR
EPWM_AQCTLBCBUAQ_SET
CBDAQ_CLEAR
Table 29-33 EPWMx Run Time Changes for Figure 29-29
RegisterBitfieldValueComments
EPWM_CMPACMPADuty1AAdjust duty for output EPWM1A
EPWM_CMPBCMPBDuty1BAdjust duty for output EPWM1B

Table 29-34 and Table 29-35 contains initialization and runtime register configurations for the waveforms in Figure 29-30. Use the code in Section 29.2.4 to define the headers.

AM571x Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Complementary
PWM period = 2 × TBPRD × TTBCLK
Duty modulation for EPWMxA is set by CMPA, and is active low, i.e., low time duty proportional to CMPA
Duty modulation for EPWMxB is set by CMPB and is active high, i.e., high time duty proportional to CMPB
Outputs EPWMx can drive upper/lower (complementary) power switches
Dead-band = CMPB - CMPA (fully programmable edge placement by software). Note the dead-band module is also available if the more classical edge delay method is required.
Figure 29-30 Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Complementary
Table 29-34 EPWMx Initialization for Figure 29-30
RegisterBitfieldValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UPDOWN
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA350 (15Eh)Compare A = 350 TBCLK counts
EPWM_CMPBCMPB400 (190h)Compare B = 400 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLACAUAQ_SET
CADAQ_CLEAR
EPWM_AQCTLBCBUAQ_CLEAR
CBDAQ_SET
Table 29-35 EPWMx Run Time Changes for Figure 29-30
RegisterBitfieldValueComments
EPWM_CMPACMPADuty1AAdjust duty for output EPWM1A
EPWM_CMPBCMPBDuty1BAdjust duty for output EPWM1B

Table 29-36 and Table 29-37 contains initialization and runtime register configurations for the waveforms in Figure 29-31. Use the code in Section 29.2.4 to define the headers.

AM571x Up-Down-Count, Dual Edge Asymmetric Waveform, With Independent Modulation on EPWMxA—Active Low
PWM period = 2 × TBPRD × TBCLK
Rising edge and falling edge can be asymmetrically positioned within a PWM cycle. This allows for pulse placement techniques.
Duty modulation for EPWMxA is set by CMPA and CMPB.
Low time duty for EPWMxA is proportional to (CMPA + CMPB).
To change this example to active high, CMPA and CMPB actions need to be inverted (i.e., Set ! Clear and Clear Set).
Duty modulation for EPWMxB is fixed at 50% (utilizes spare action resources for EPWMxB)
Figure 29-31 Up-Down-Count, Dual Edge Asymmetric Waveform, With Independent Modulation on EPWMxA—Active Low
Table 29-36 EPWMx Initialization for Figure 29-31
RegisterBitfieldValueComments
EPWM_TBPRDTBPRD600 (258h)Period = 601 TBCLK counts
EPWM_TBPHSTBPHS0Clear Phase Register to 0
EPWM_TBCNTTBCNT0Clear TB counter
EPWM_TBCTLCTRMODETB_UPDOWN
PHSENTB_DISABLEPhase loading disabled
PRDLDTB_SHADOW
SYNCOSELTB_SYNC_DISABLE
HSPCLKDIVTB_DIV1TBCLK = SYSCLKOUT
CLKDIVTB_DIV1
EPWM_CMPACMPA250 (FAh)Compare A = 250 TBCLK counts
EPWM_CMPBCMPB450 (1C2h)Compare B = 450 TBCLK counts
EPWM_CMPCTLSHDWAMODECC_SHADOW
SHDWBMODECC_SHADOW
LOADAMODECC_CTR_ZEROLoad on TBCNT = 0
LOADBMODECC_CTR_ZEROLoad on TBCNT = 0
EPWM_AQCTLACAUAQ_SET
CBDAQ_CLEAR
EPWM_AQCTLBZROAQ_CLEAR
PRDAQ_SET
Table 29-37 EPWMx Run Time Changes for Figure 29-31
RegisterBitfieldValueComments
EPWM_CMPACMPAEdgePosAAdjust duty for output EPWM1A
EPWM_CMPBCMPBEdgePosB

29.2.24 ePWM Dead-Band Generator (DB) Submodule

Figure 29-32 illustrates the dead-band generator submodule within the ePWM module.

AM571x Dead-Band Generator SubmoduleFigure 29-32 Dead-Band Generator Submodule

29.2.25 Purpose of the ePWM Dead-Band Submodule

The "Action-qualifier (AQ) Module" section discussed how it is possible to generate the required dead-band by having full control over edge placement using both the CMPA and CMPB resources of the ePWM module. However, if the more classical edge delay-based dead-band with polarity control is required, then the dead-band generator submodule should be used.

The key functions of the dead-band generator submodule are:

  • Generating appropriate signal pairs (EPWMxA and EPWMxB) with dead-band relationship from a single EPWMxA input
  • Programming signal pairs for:
    • Active high (AH)
    • Active low (AL)
    • Active high complementary (AHC)
    • Active low complementary (ALC)
  • Adding programmable delay to rising edges (RED)
  • Adding programmable delay to falling edges (FED)
  • Can be totally bypassed from the signal path (note dotted lines in diagram)

29.2.26 Controlling and Monitoring the ePWM Dead-Band Submodule

The dead-band generator submodule operation is controlled and monitored via the following registers:

Table 29-38 Dead-Band Generator Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_DBCTLDead-Band Control Register1EhNo
EPWM_DBREDDead-Band Rising Edge Delay Count Register20hNo
EPWM_DBFEDDead-Band Falling Edge Delay Count Register22hNo

29.2.27 Operational Highlights for the ePWM Dead-Band Generator Submodule

The following sections provide the operational highlights.

The dead-band submodule has two groups of independent selection options as shown in Figure 29-33.

  • Input Source Selection: The input signals to the dead-band module are the EPWMxA and EPWMxB output signals from the action-qualifier. In this section they will be referred to as EPWMxA In and EPWMxB In. Using the EPWM_DBCTL[5:4] IN_MODE control bits, the signal source for each delay, falling-edge or rising-edge, can be selected:
    • EPWMxA In is the source for both falling-edge and rising-edge delay. This is the default mode.
    • EPWMxA In is the source for falling-edge delay, EPWMxB In is the source for rising-edge delay.
    • EPWMxA In is the source for rising edge delay, EPWMxB In is the source for falling-edge delay.
    • EPWMxB In is the source for both falling-edge and rising-edge delay.
  • Output Mode Control: The output mode is configured by way of the EPWM_DBCTL[1:0] OUT_MODE bits. These bits determine if the falling-edge delay, rising-edge delay, neither, or both are applied to the input signals.
  • Polarity Control: The polarity control (EPWM_DBCTL[3:2] POLSEL) allows you to specify whether the rising-edge delayed signal and/or the falling-edge delayed signal is to be inverted before being sent out of the dead-band submodule.

AM571x Configuration Options for the ePWM Dead-Band Generator SubmoduleFigure 29-33 Configuration Options for the ePWM Dead-Band Generator Submodule

Although all combinations are supported, not all are typical usage modes. Table 29-39 lists some classical dead-band configurations. These modes assume that the EPWM_DBCTL[5:4] IN_MODE is configured such that EPWMxA In is the source for both falling-edge and rising-edge delay. Enhanced, or non-traditional modes can be achieved by changing the input signal source. The modes shown in Table 29-39 fall into the following categories:

  • Mode 1: Bypass both falling-edge delay (FED) and rising-edge delay (RED) Allows you to fully disable the dead-band submodule from the PWM signal path.
  • Mode 2-5: Classical Dead-Band Polarity Settings These represent typical polarity configurations that should address all the active high/low modes required by available industry power switch gate drivers. The waveforms for these typical cases are shown in Figure 29-34. Note that to generate equivalent waveforms to Figure 29-34, configure the action-qualifier submodule to generate the signal as shown for EPWMxA.
  • Mode 6: Bypass rising-edge-delay and Mode 7: Bypass falling-edge-delay Finally the last two entries in Table 29-39 show combinations where either the falling-edge-delay (FED) or rising-edge-delay (RED) blocks are bypassed.
Table 29-39 Classical Dead-Band Operating Modes
ModeMode Description (1)EPWM_DBCTL[3:2] POLSELEPWM_DBCTL[1:0] OUT_MODE
S3S2S1S0
1EPWMxA and EPWMxB Passed Through (No Delay)xx00
2Active High Complementary (AHC)1011
3Active Low Complementary (ALC)0111
4Active High (AH)0011
5Active Low (AL)1111
6EPWMxA Out = EPWMxA In (No Delay)0 or 10 or 101
EPWMxB Out = EPWMxA In with Falling Edge Delay
7EPWMxA Out = EPWMxA In with Rising Edge Delay0 or 10 or 110
EPWMxB Out = EPWMxB In with No Delay
These are classical dead-band modes and assume that EPWM_DBCTL[5:4] IN_MODE = 0b00. That is, EPWMxA in is the source for both the falling-edge and rising-edge delays. Enhanced, non-traditional modes can be achieved by changing the IN_MODE configuration.

Figure 29-34 shows waveforms for typical cases where 0% < duty < 100%.

AM571x Dead-Band Waveforms for Typical Cases (0% < Duty < 100%)Figure 29-34 Dead-Band Waveforms for Typical Cases (0% < Duty < 100%)

The dead-band submodule supports independent values for rising-edge (RED) and falling-edge (FED) delays. The amount of delay is programmed using the EPWM_DBRED and EPWM_DBFED registers. These are 10-bit registers and their value represents the number of time-base clock, TBCLK, periods a signal edge is delayed by. For example, the formula to calculate falling-edge-delay and rising-edge-delay are:

FED = EPWM_DBFED × TTBCLK

RED = EPWM_DBRED × TTBCLK

Where TTBCLK is the period of TBCLK, the prescaled version of SYSCLKOUT.

29.2.28 PWM-Chopper (PC) Submodule

Figure 29-35 illustrates the PWM-chopper (PC) submodule within the ePWM module. The PWM-chopper submodule allows a high-frequency carrier signal to modulate the PWM waveform generated by the action-qualifier and dead-band submodules. This capability is important if you need pulse transformer-based gate drivers to control the power switching elements.

AM571x PWM-Chopper SubmoduleFigure 29-35 PWM-Chopper Submodule

29.2.29 Purpose of the PWM-Chopper Submodule

The key functions of the PWM-chopper submodule are:

  • Programmable chopping (carrier) frequency
  • Programmable pulse width of first pulse
  • Programmable duty cycle of second and subsequent pulses
  • Can be fully bypassed if not required

29.2.30 Controlling the PWM-Chopper Submodule

The PWM-chopper submodule operation is controlled via the register in Table 29-40.

Table 29-40 PWM-Chopper Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_PCCTLPWM-chopper Control Register3ChNo

29.2.31 Operational Highlights for the PWM-Chopper Submodule

Figure 29-36 shows the operational details of the PWM-chopper submodule. The carrier clock is derived from SYSCLKOUT. Its frequency and duty cycle are controlled via the CHPFREQ and CHPDUTY bits in the EPWM_PCCTL register. The one-shot block is a feature that provides a high energy first pulse to ensure hard and fast power switch turn on, while the subsequent pulses sustain pulses, ensuring the power switch remains on. The one-shot width is programmed via the OSHTWTH bits. The PWM-chopper submodule can be fully disabled (bypassed) via the CHPEN bit.

AM571x PWM-Chopper Submodule Signals and RegistersFigure 29-36 PWM-Chopper Submodule Signals and Registers

29.2.32 PWM Chopper Waveforms

Figure 29-37 shows simplified waveforms of the chopping action only; one-shot and duty-cycle control are not shown. Details of the one-shot and duty-cycle control are discussed in the following sections.

AM571x Simple PWM-Chopper Submodule Waveforms Showing Chopping Action OnlyFigure 29-37 Simple PWM-Chopper Submodule Waveforms Showing Chopping Action Only

29.2.33 PWM-Chopper One-Shot Pulse

The width of the first pulse can be programmed to any of 16 possible pulse width values. The width or period of the first pulse is given by:

T1stpulse = TSYSCLKOUT × 8 × OSHTWTH

Where TSYSCLKOUT is the period of the system clock (SYSCLKOUT) and OSHTWTH is the four control bits (value from 1 to 16)

Figure 29-38 shows the first and subsequent sustaining pulses.

AM571x PWM-Chopper Submodule Waveforms Showing the First Pulse and Subsequent Sustaining PulsesFigure 29-38 PWM-Chopper Submodule Waveforms Showing the First Pulse and
Subsequent Sustaining Pulses

29.2.34 PWM-Chopper Duty Cycle Control

Pulse transformer-based gate drive designs need to comprehend the magnetic properties or characteristics of the transformer and associated circuitry. Saturation is one such consideration. To assist the gate drive designer, the duty cycles of the second and subsequent pulses have been made programmable. These sustaining pulses ensure the correct drive strength and polarity is maintained on the power switch gate during the on period, and hence a programmable duty cycle allows a design to be tuned or optimized via software control.

Figure 29-39 shows the duty cycle control that is possible by programming the CHPDUTY bits. One of seven possible duty ratios can be selected ranging from 12.5% to 87.5%.

AM571x PWM-Chopper Submodule Waveforms Showing the Pulse Width (Duty Cycle) Control of Sustaining PulsesFigure 29-39 PWM-Chopper Submodule Waveforms Showing the Pulse Width (Duty Cycle) Control of Sustaining Pulses

29.2.35 ePWM Trip-Zone (TZ) Submodule

Figure 29-40 shows how the trip-zone (TZ) submodule fits within the ePWM module. Each ePWM module is connected to every TZ signal that are sourced from the GPIO MUX. These signals indicates external fault or trip conditions, and the ePWM outputs can be programmed to respond accordingly when faults occur. See Section 29.1.3 to determine the number of trip-zone pins available for the device.

AM571x ePWM Trip-Zone SubmoduleFigure 29-40 ePWM Trip-Zone Submodule

29.2.36 Purpose of the ePWM Trip-Zone Submodule

The key functions of the trip-zone submodule are:

  • Trip inputs TZ0 to TZk-1 can be flexibly mapped to any ePWM module.
  • Upon a fault condition, outputs EPWMxA and EPWMxB can be forced to one of the following:
    • High
    • Low
    • High-impedance
    • No action taken
  • Support for one-shot trip (OSHT) for major short circuits or over-current conditions.
  • Support for cycle-by-cycle tripping (CBC) for current limiting operation.
  • Each trip-zone input pin can be allocated to either one-shot or cycle-by-cycle operation.
  • Interrupt generation is possible on any trip-zone pin.
  • Software-forced tripping is also supported.
  • The trip-zone submodule can be fully bypassed if it is not required.
Note:

For each ePWMx, from the tripzone inputs EPWM_TRIP_TZ[5:0], ONLY the EPWM_TRIP_TZ[0] input of ePWM tripzone is chip accessible and usable, i.e. k=1.

29.2.37 Controlling and Monitoring the ePWM Trip-Zone Submodule

The trip-zone submodule operation is controlled and monitored through the following registers:

Table 29-41 ePWM Trip-Zone Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_TZSELTrip-Zone Select Register24hNo
EPWM_TZCTLTrip-Zone Control Register28hNo
EPWM_TZEINTTrip-Zone Enable Interrupt Register2AhNo
EPWM_TZFLGTrip-Zone Flag Register2ChNo
EPWM_TZCLRTrip-Zone Clear Register2EhNo
EPWM_TZFRCTrip-Zone Force Register30hNo

29.2.38 Operational Highlights for the ePWM Trip-Zone Submodule

The following sections describe the operational highlights and configuration options for the trip-zone submodule.

The trip-zone signals at pin TZ0 to TZk-1 is an active-low input signal. When the pin goes low, it indicates that a trip event has occurred. Each ePWM module can be individually configured to ignore or use each of the trip-zone pins. Which trip-zone pins are used by a particular ePWM module is determined by the EPWM_TZSEL register for that specific ePWM module. The trip-zone signal may or may not be synchronized to the system clock (SYSCLKOUT). A minimum of 1 SYSCLKOUT low pulse on the TZn inputs is sufficient to trigger a fault condition in the ePWM module. The asynchronous trip makes sure that if clocks are missing for any reason, the outputs can still be tripped by a valid event present on the TZk inputs.

Note:

Only the TZ[0] input is accessible at chip level (i.e. k=1).

The TZk input can be individually configured to provide either a cycle-by-cycle or one-shot trip event for a ePWM module. The configuration is determined by the EPWM_TZSEL[7:0] CBCk and EPWM_TZSEL[15:8] OSHTk bits (where k corresponds to the trip pin) respectively.

  • Cycle-by-Cycle (CBC): When a cycle-by-cycle trip event occurs, the action specified in the EPWM_TZCTL register is carried out immediately on the EPWMxA and/or EPWMxB output. Table 29-42 lists the possible actions. In addition, the cycle-by-cycle trip event flag (EPWM_TZFLG[1] CBC) is set and a EPWMxTZINT interrupt is generated if it is enabled in the EPWM_TZEINT register.

    The specified condition on the pins is automatically cleared when the ePWM time-base counter reaches zero (EPWM_TBCNT bitfield TBCNT = 0000h) if the trip event is no longer present. Therefore, in this mode, the trip event is cleared or reset every PWM cycle. The EPWM_TZFLG[1] CBC flag bit will remain set until it is manually cleared by writing to the EPWM_TZCLR[1] CBC bit. If the cycle-by-cycle trip event is still present when the EPWM_TZFLG[1] CBC bit is cleared, then it will again be immediately set.

  • One-Shot (OSHT): When a one-shot trip event occurs, the action specified in the EPWM_TZCTL register is carried out immediately on the EPWMxA and/or EPWMxB output. Table 29-42 lists the possible actions. In addition, the one-shot trip event flag (EPWM_TZFLG[2] OST) is set and a EPWMxTZINT interrupt is generated if it is enabled in the EPWM_TZEINT register. The one-shot trip condition must be cleared manually by writing to the EPWM_TZCLR[2] OST bit.

The action taken when a trip event occurs can be configured individually for each of the ePWM output pins by way of the EPWM_TZCTL[1:0] TZA and EPWM_TZCTL[3:2] TZB register bits. One of four possible actions, shown in Table 29-42, can be taken on a trip event.

Table 29-42 Possible Actions On an ePWM Trip Event
EPWM_TZCTL[1:0] TZA
and/or
EPWM_TZCTL[3:2] TZB
EPWMxA
and/or
EPWMxB
Comment
0High-ImpedanceTripped
1hForce to High StateTripped
2hForce to Low StateTripped
3hNo ChangeDo Nothing. No change is made to the output.

29.2.39 ePWM Trip-Zone Configurations

Scenario A:
A one-shot trip event on TZ0 pulls both EPWM1A, EPWM1B low and also forces EPWM2A and EPWM2B high.

  • Configure the ePWM1 registers as follows:
    • EPWM_TZSEL[8] OSHT1 = 1: enables TZ as a one-shot event source for ePWM1
    • EPWM_TZCTL[1:0] TZA = 2: EPWM1A will be forced low on a trip event.
    • EPWM_TZCTL[3:2] TZB = 2: EPWM1B will be forced low on a trip event.
  • Configure the ePWM2 registers as follows:
    • EPWM_TZSEL[8] OSHT1 = 1: enables TZ as a one-shot event source for ePWM2
    • EPWM_TZCTL[1:0] TZA = 1: EPWM2A will be forced high on a trip event.
    • EPWM_TZCTL[3:2] TZB = 1: EPWM2B will be forced high on a trip event.

29.2.40 Generating ePWM Trip Event Interrupts

Figure 29-41 and Figure 29-42 illustrate the trip-zone submodule control and interrupt logic, respectively.

AM571x ePWM Trip-Zone Submodule Mode Control LogicFigure 29-41 ePWM Trip-Zone Submodule Mode Control Logic
AM571x ePWM Trip-Zone Submodule Interrupt LogicFigure 29-42 ePWM Trip-Zone Submodule Interrupt Logic

29.2.41 ePWM Event-Trigger (ET) Submodule

Figure 29-43 shows the event-trigger (ET) submodule in the ePWM system. The event-trigger submodule manages the events generated by the time-base submodule and the counter-compare submodule to generate an aggregated interrupt request.

Note:

The ePWMx ET interrupt request output is further routed via the device IRQ_CROSSBAR, to different device host interrupt controllers, located outside PWMSSn. For more details on interrupt event routing outside the ePWM, refer to the Section 29.1.3.

AM571x ePWM Event-Trigger SubmoduleFigure 29-43 ePWM Event-Trigger Submodule

29.2.42 Purpose of the ePWM Event-Trigger Submodule

The key functions of the event-trigger submodule are:

  • Receives event inputs generated by the time-base and counter-compare submodules
  • Uses the time-base direction information for up/down event qualification
  • Uses prescaling logic to issue interrupt requests at:
    • Every event
    • Every second event
    • Every third event
  • Provides full visibility of event generation via event counters and flags

29.2.43 Controlling and Monitoring the ePWM Event-Trigger Submodule

The key registers used to configure the event-trigger submodule are shown in Table 29-43:

Table 29-43 Event-Trigger Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
EPWM_ETSELEvent-Trigger Selection Register32hNo
EPWM_ETPSEvent-Trigger Prescale Register34hNo
EPWM_ETFLGEvent-Trigger Flag Register36hNo
EPWM_ETCLREvent-Trigger Clear Register38hNo
EPWM_ETFRCEvent-Trigger Force Register3AhNo

29.2.44 Operational Overview of the ePWM Event-Trigger Submodule

The following sections describe the event-trigger submodule's operational highlights.

Each ePWM module has one interrupt request line as shown in Figure 29-44. Mapping interrupt lines to device host interrupt controllers is device specific and is covered in the Section 29.1.3.

AM571x ePWM Event-Trigger Submodule Inter-Connectivity to Interrupt ControllerFigure 29-44 ePWM Event-Trigger Submodule Inter-Connectivity to Interrupt Controller

The event-trigger submodule monitors various event conditions (the left side inputs to event-trigger submodule shown in Figure 29-45) and can be configured to prescale these events before issuing an Interrupt request. The event-trigger prescaling logic can issue Interrupt requests at:

  • Every event
  • Every second event
  • Every third event
AM571x ePWM Event-Trigger Submodule Showing Event Inputs and Prescaled OutputsFigure 29-45 ePWM Event-Trigger Submodule Showing Event Inputs and Prescaled Outputs

  • ETSEL—This selects which of the possible events will trigger an interrupt.
  • ETPS—This programs the event prescaling options previously mentioned.
  • ETFLG—These are flag bits indicating status of the selected and prescaled events.
  • ETCLR—These bits allow you to clear the flag bits in the EPWM_ETFLG register via software.
  • ETFRC—These bits allow software forcing of an event. Useful for debugging or software intervention.

A more detailed look at how the various register bits interact with the Interrupt is shown in Figure 29-46.

Figure 29-46 shows the event-trigger's interrupt generation logic. The interrupt-period (EPWM_ETPS[1:0] INTPRD) bits specify the number of events required to cause an interrupt pulse to be generated. The choices available are:

  • Do not generate an interrupt
  • Generate an interrupt on every event
  • Generate an interrupt on every second event
  • Generate an interrupt on every third event

An interrupt cannot be generated on every fourth or more events.

Which event can cause an interrupt is configured by the interrupt selection (EPWM_ETSEL[2:0] INTSEL) bits. The event can be one of the following:

  • Time-base counter equal to zero (EPWM_TBCNT bitfield TBCNT = 0000h).
  • Time-base counter equal to period (EPWM_TBCNT bitfield TBCNT = TBPRD value in EPWM_TBPRD active register).
  • Time-base counter equal to the compare A register (EPWM_CMPA) when the timer is incrementing.
  • Time-base counter equal to the compare A register (EPWM_CMPA) when the timer is decrementing.
  • Time-base counter equal to the compare B register (EPWM_CMPB) when the timer is incrementing.
  • Time-base counter equal to the compare B register (EPWM_CMPB) when the timer is decrementing.

The number of events that have occurred can be read from the interrupt event counter (EPWM_ETPS[3:2] INTCNT) register bits. That is, when the specified event occurs the EPWM_ETPS[3:2] INTCNT bits are incremented until they reach the value specified by EPWM_ETPS[1:0] INTPRD. When EPWM_ETPS[3:2] INTCNT = EPWM_ETPS[1:0] INTPRD the counter stops counting and its output is set. The counter is only cleared when an interrupt is sent to the interrupt controller.

When EPWM_ETPS[3:2] INTCNT reaches EPWM_ETPS[1:0] INTPRD, one of the following behaviors will occur:

  • If interrupts are enabled, EPWM_ETSEL[3] INTEN = 1 and the interrupt flag is clear, EPWM_ETFLG[0] INT = 0, then an interrupt pulse is generated and the interrupt flag is set, EPWM_ETFLG[0] INT = 1, and the event counter is cleared EPWM_ETPS[3:2] INTCNT = 0. The counter will begin counting events again.
  • If interrupts are disabled, EPWM_ETSEL[3] INTEN = 0, or the interrupt flag is set, EPWM_ETFLG[0] INT = 1, the counter stops counting events when it reaches the period value EPWM_ETPS[3:2] INTCNT = EPWM_ETPS[1:0] INTPRD.
  • If interrupts are enabled, but the interrupt flag is already set, then the counter will hold its output high until the ENTFLG[0] INT flag is cleared. This allows for one interrupt to be pending while one is serviced.

Writing to the INTPRD bits will automatically clear the counter INTCNT = 0 and the counter output will be reset (so no interrupts are generated). Writing a 1 to the EPWM_ETFRC[0] INT bit will increment the event counter INTCNT. The counter will behave as described above when INTCNT = INTPRD. When INTPRD = 0, the counter is disabled and hence no events will be detected and the EPWM_ETFRC[0] INT bit is also ignored.

AM571x ePWM Event-Trigger Interrupt GeneratorFigure 29-46 ePWM Event-Trigger Interrupt Generator

29.2.45 High-Resolution PWM (HRPWM) Submodule

Figure 29-47 shows the high-resolution PWM (HRPWM) submodule in the ePWM system. Some devices include the high-resolution PWM submodule, see Section 29.1.3 to determine which ePWM instances include this feature.

AM571x HRPWM System InterfaceFigure 29-47 HRPWM System Interface

29.2.46 Purpose of the High-Resolution PWM Submodule

The enhanced high-resolution pulse-width modulator (eHRPWM) extends the time resolution capabilities of the conventionally derived digital pulse-width modulator (PWM). HRPWM is typically used when PWM resolution falls below ~9-10 bits. The key features of HRPWM are:

  • Extended time resolution capability
  • Used in both duty cycle and phase-shift control methods
  • Finer time granularity control or edge positioning using extensions to the Compare A and Phase registers
  • Implemented using the A signal path of PWM, that is, on the EPWMxA output. EPWMxB output has conventional PWM capabilities

The ePWM peripheral is used to perform a function that is mathematically equivalent to a digital-to-analog converter (DAC). As shown in Figure 29-48, the effective resolution for conventionally generated PWM is a function of PWM frequency (or period) and system clock frequency.

AM571x Resolution Calculations for Conventionally Generated PWMFigure 29-48 Resolution Calculations for Conventionally Generated PWM

If the required PWM operating frequency does not offer sufficient resolution in PWM mode, you may want to consider HRPWM. As an example of improved performance offered by HRPWM, Table 29-44 shows resolution in bits for various PWM frequencies. Table 29-44 values assume a MEP step size of 180 ps. See your device-specific data manual for typical and maximum performance specifications for the MEP.

Table 29-44 Resolution for PWM and HRPWM
PWM Frequency (kHz)Regular Resolution (PWM)High Resolution (HRPWM)
Bits%Bits%
2012.30.018.10.000
5011.00.016.80.001
10010.00.115.80.002
1509.40.215.20.003
2009.00.214.80.004
2508.60.314.40.005
5007.60.513.80.007
10006.61.012.40.018
15006.11.511.90.027
20005.62.011.40.036

Although each application may differ, typical low-frequency PWM operation (below 250 kHz) may not require HRPWM. HRPWM capability is most useful for high-frequency PWM requirements of power conversion topologies such as:

  • Single-phase buck, boost, and flyback
  • Multi-phase buck, boost, and flyback
  • Phase-shifted full bridge
  • Direct modulation of D-Class power amplifiers

29.2.47 Architecture of the High-Resolution PWM Submodule

The HRPWM is based on micro edge positioner (MEP) technology. MEP logic is capable of positioning an edge very finely by sub-dividing one coarse system clock of a conventional PWM generator. The time step accuracy is on the order of 150 ps. The HRPWM also has a self-check software diagnostics mode to check if the MEP logic is running optimally, under all operating conditions.

Figure 29-49 shows the relationship between one coarse system clock and edge position in terms of MEP steps, which are controlled via an 8-bit field in the Compare A extension register (HRPWM_CMPAHR).

AM571x Operating Logic Using MEP
For MEP range and rounding adjustment.
Figure 29-49 Operating Logic Using MEP

To generate an HRPWM waveform, configure the TBM, CCM, and AQM registers as you would to generate a conventional PWM of a given frequency and polarity. The HRPWM works together with the TBM, CCM, and AQM registers to extend edge resolution, and should be configured accordingly. Although many programming combinations are possible, only a few are needed and practical.

29.2.48 Controlling and Monitoring the High-Resolution PWM Submodule

The MEP of the HRPWM is controlled by two extension registers, each 8-bits wide. These two HRPWM registers are concatenated with the 16-bit EPWM_TBPHS and EPWM_CMPA registers used to control PWM operation.

Table 29-45 lists the registers used to control and monitor the high-resolution PWM submodule.

Table 29-45 HRPWM Submodule Registers
AcronymRegister DescriptionAddress OffsetShadowed
HRPWM_TBPHSHRExtension Register for HRPWM Phase4hNo
HRPWM_CMPAHRExtension Register for HRPWM Duty10hYes
HRPWM_HRCTLHRPWM Configuration Register1040hNo

29.2.49 Configuring the High-Resolution PWM Submodule

Once the ePWM has been configured to provide conventional PWM of a given frequency and polarity, the HRPWM is configured by programming the HRPWM_HRCTL register located at offset address 1040h. This register provides configuration options for the following key operating modes:

  • Edge Mode: The MEP can be programmed to provide precise position control on the rising edge (RE), falling edge (FE), or both edges (BE) at the same time. FE and RE are used for power topologies requiring duty cycle control, while BE is used for topologies requiring phase shifting, for example, phase shifted full bridge.
  • Control Mode: The MEP is programmed to be controlled either from the HRPWM_CMPAHR register (duty cycle control) or the HRPWM_TBPHSHR register (phase control). RE or FE control mode should be used with HRPWM_CMPAHR register. BE control mode should be used with HRPWM_TBPHSHR register.
  • Shadow Mode: This mode provides the same shadowing (double buffering) option as in regular PWM mode. This option is valid only when operating from the HRPWM_CMPAHR register and should be chosen to be the same as the regular load option for the CMPA register. If HRPWM_TBPHSHR is used, then this option has no effect.

29.2.50 Operational Highlights for the High-Resolution PWM Submodule

The MEP logic is capable of placing an edge in one of 255 (8 bits) discrete time steps, each of which has a time resolution on the order of 150 ps. The MEP works with the TBM and CCM registers to be certain that time steps are optimally applied and that edge placement accuracy is maintained over a wide range of PWM frequencies, system clock frequencies and other operating conditions. Table 29-46 shows the typical range of operating frequencies supported by the HRPWM.

Table 29-46 Relationship Between MEP Steps, PWM Frequency and Resolution
System
(MHz)
MEP Steps Per SYSCLKOUT(1) (2) (3)PWM Minimum
(Hz)(4)
PWM Maximum
(MHz)
Resolution at Maximum
(Bits)(5)
50.01117632.5011.1
60.0939163.0010.9
70.07910683.5010.6
80.06912214.0010.4
90.06213734.5010.3
100.05615265.0010.1
System frequency = SYSCLKOUT, that is, CPU clock. TBCLK = SYSCLKOUT
Table data based on a MEP time resolution of 180 ps (this is an example value)
MEP steps applied = TSYSCLKOUT/180 ps in this example.
PWM minimum frequency is based on a maximum period value, TBPRD = 65 535. PWM mode is asymmetrical up-count.
Resolution in bits is given for the maximum PWM frequency stated.

29.2.51 HRPWM Edge Positioning

In a typical power control loop (switch modes, digital motor control (DMC), uninterruptible power supply (UPS)), a digital controller (PID, 2pole/2zero, lag/lead, etc.) issues a duty command, usually expressed in a per unit or percentage terms.

In the following example, assume that for a particular operating point, the demanded duty cycle is 0.405 or 40.5% on-time and the required converter PWM frequency is 1.25 MHz. In conventional PWM generation with a system clock of 100 MHz, the duty cycle choices are in the vicinity of 40.5%. In Figure 29-50, a compare value of 32 counts (duty = 40%) is the closest to 40.5% that you can attain. This is equivalent to an edge position of 320 ns instead of the desired 324 ns. This data is shown in Table 29-47.

By utilizing the MEP, you can achieve an edge position much closer to the desired point of 324 ns. Table 29-47 shows that in addition to the CMPA value, 22 steps of the MEP (HRPWM_CMPAHR register) will position the edge at 323.96 ns, resulting in almost zero error. In this example, it is assumed that the MEP has a step resolution of 180 ns.

AM571x Required PWM Waveform for a Requested Duty = 40.5%Figure 29-50 Required PWM Waveform for a Requested Duty = 40.5%
Table 29-47 CMPA vs Duty (left), and [CMPA:CMPAHR] vs Duty (right)
CMPA
(count)(1) (2) (3)
DUTY
(%)
High Time
(ns)
CMPA
(count)
CMPAHR
(count)
Duty
(%)
High Time
(ns)
2835.0280321840.405323.24
2936.3290321940.428323.42
3037.5300322040.450323.60
3138.8310322140.473323.78
3240.0320322240.495323.96
3341.3330322340.518324.14
3442.5340322440.540324.32
322540.563324.50
Required322640.585324.68
32.4040.5324322740.608324.86
System clock, SYSCLKOUT and TBCLK = 100 MHz, 10 ns
For a PWM Period register value of 80 counts, PWM Period = 80 × 10 ns = 800 ns, PWM frequency = 1/800 ns = 1.25 MHz
Assumed MEP step size for the above example = 180 ps

29.2.52 HRPWM Scaling Considerations

The mechanics of how to position an edge precisely in time has been demonstrated using the resources of the standard (EPWM_CMPA) and MEP (HRPWM_CMPAHR) registers. In a practical application, however, it is necessary to seamlessly provide the CPU a mapping function from a per-unit (fractional) duty cycle to a final integer (non-fractional) representation that is written to the [CMPA:CMPAHR] register combination.

To do this, first examine the scaling or mapping steps involved. It is common in control software to express duty cycle in a per-unit or percentage basis. This has the advantage of performing all needed math calculations without concern for the final absolute duty cycle, expressed in clock counts or high time in ns. Furthermore, it makes the code more transportable across multiple converter types running different PWM frequencies.

To implement the mapping scheme, a two-step scaling procedure is required.

Assumptions for this example:

System clock, SYSCLKOUT=10 ns (100 MHz)
PWM frequency=1.25 MHz (1/800 ns)
Required PWM duty cycle, PWMDuty=0.405 (40.5%)
PWM period in terms of coarse steps,
PWMperiod (800 ns/10 ns)

=

80
Number of MEP steps per coarse step at
180 ps (10 ns/180 ps), MEP_SF

=

55
Value to keep CMPAHR within the range
of 1-255 and fractional rounding constant (default value)

=

180h

Step 1: Percentage Integer Duty value conversion for EPWM_CMPA register

EPWM_CMPA register value=int(PWMDuty × PWMperiod); int means integer part
=int(0.405 × 80)
=int(32.4)
EPWM_CMPA register value=32 (20h)

Step 2: Fractional value conversion for HRPWM_CMPAHR register

HRPWM_CMPAHR register value=(frac(PWMDuty × PWMperiod) × MEP_SF) << 8) + 180h; frac means fractional part
=(frac(32.4) × 55 <<8) + 180h; Shift is to move the value as CMPAHR high byte
=((0.4 × 55) <<8) + 180h
=(22 <<8) + 180h
=22 × 256 + 180h ; Shifting left by 8 is the same multiplying by 256.
=5632 + 180h
=1600h + 180h
HRPWM_CMPAHR value=1780h; HRPWM_CMPAHR value = 1700h, lower 8 bits will be ignored by hardware.

29.2.53 HRPWM Duty Cycle Range Limitation

In high resolution mode, the MEP is not active for 100% of the PWM period. It becomes operational 3 SYSCLKOUT cycles after the period starts.

Duty cycle range limitations are illustrated in Figure 29-51. This limitation imposes a lower duty cycle limit on the MEP. For example, precision edge control is not available all the way down to 0% duty cycle. Although for the first 3 or 6 cycles, the HRPWM capabilities are not available, regular PWM duty control is still fully operational down to 0% duty. In most applications this should not be an issue as the controller regulation point is usually not designed to be close to 0% duty cycle.

AM571x Low % Duty Cycle Range Limitation Example When PWM Frequency = 1 MHzFigure 29-51 Low % Duty Cycle Range Limitation Example When PWM Frequency = 1 MHz

If the application demands HRPWM operation in the low percent duty cycle region, then the HRPWM can be configured to operate in count-down mode with the rising edge position (REP) controlled by the MEP. This is illustrated in Figure 29-52. In this case low percent duty limitation is no longer an issue.

AM571x High % Duty Cycle Range Limitation Example when PWM Frequency = 1 MHz Figure 29-52 High % Duty Cycle Range Limitation Example when PWM Frequency = 1 MHz

29.2.54 eHRPWM Functional Register Groups

The Table 29-48 lists the groups of ePWM and the high-resolution PWM module registers according to their functionalities.

Table 29-48 ePWM/HRPWM Module Control and Status Registers Grouped by Submodule
Register NameOffsetSize (×16)ShadowRegister Description
Time-Base Submodule Registers
EPWM_TBCTL0h1NoTime-Base Control Register
EPWM_TBSTS2h1NoTime-Base Status Register
EPWM_TBPHS6h1NoTime-Base Phase Register
EPWM_TBCNT8h1NoTime-Base Counter Register
EPWM_TBPRDAh1YesTime-Base Period Register
Counter-Compare Submodule Registers
EPWM_CMPCTLEh1NoCounter-Compare Control Register
EPWM_CMPA12h1YesCounter-Compare A Register
EPWM_CMPB14h1YesCounter-Compare B Register
Action-Qualifier Submodule Registers
EPWM_AQCTLA16h1NoAction-Qualifier Control Register for Output A (EPWMxA)
EPWM_AQCTLB18h1NoAction-Qualifier Control Register for Output B (EPWMxB)
EPWM_AQSFRC1Ah1NoAction-Qualifier Software Force Register
EPWM_AQCSFRC1Ch1YesAction-Qualifier Continuous S/W Force Register Set
Dead-Band Generator Submodule Registers
EPWM_DBCTL1Eh1NoDead-Band Generator Control Register
EPWM_DBRED20h1NoDead-Band Generator Rising Edge Delay Count Register
EPWM_DBFED22h1NoDead-Band Generator Falling Edge Delay Count Register
Trip-Zone Submodule Registers
EPWM_TZSEL24h1NoTrip-Zone Select Register
EPWM_TZCTL28h1NoTrip-Zone Control Register
EPWM_TZEINT2Ah1NoTrip-Zone Enable Interrupt Register
EPWM_TZFLG2Ch1NoTrip-Zone Flag Register
EPWM_TZCLR2Eh1NoTrip-Zone Clear Register
EPWM_TZFRC30h1NoTrip-Zone Force Register
Event-Trigger Submodule Registers
EPWM_ETSEL32h1NoEvent-Trigger Selection Register
EPWM_ETPS34h1NoEvent-Trigger Pre-Scale Register
EPWM_ETFLG36h1NoEvent-Trigger Flag Register
EPWM_ETCLR38h1NoEvent-Trigger Clear Register
EPWM_ETFRC3Ah1NoEvent-Trigger Force Register
PWM-Chopper Submodule Registers
EPWM_PCCTL3Ch1NoPWM-Chopper Control Register
High-Resolution PWM (HRPWM) Submodule Registers
HRPWM_TBPHSHR4h1NoExtension for HRPWM Phase Register
HRPWM_CMPAHR10h1NoExtension for HRPWM Counter-Compare A Register
HRPWM_HRCTL40h1NoHRPWM Control Register

29.2.55 PWMSS_EPWM Register Manual

This section provides description of the device PWMSS ePWM and High Resolution-PWM relevant functional registers.

29.2.56 PWMSS_EPWM Instance Summary

Table 29-49 PWMSS_EPWM Instance Summary
Module NameModule Base Address
L4_PER2 Interconnect
Size (Bytes)
PWMSS1_EPWM0x4843 E200136 Bytes
PWMSS2_EPWM0x4844 0200136 Bytes
PWMSS3_EPWM0x4844 2200136 Bytes

29.2.57 PWMSS_EPWM Registers

29.2.58 PWMSS_EPWM Register Summary

Table 29-50 PWMSSn_EPWM Registers Mapping Summary
Register NameTypeRegister Width (Bits)Address OffsetPWMSS1_EPWM
Physical Address
L4_PER2 Interconnect
PWMSS2_EPWM
Physical Address
L4_PER2 Interconnect
PWMSS3_EPWM
Physical Address
L4_PER2 Interconnect
EPWM_TBCTLRW160x0000 00000x4843 E2000x4844 02000x4844 2200
EPWM_TBSTSRW160x0000 00020x4843 E2020x4844 02020x4844 2202
HRPWM_TBPHSHRRW160x0000 00040x4843 E2040x4844 02040x4844 2204
EPWM_TBPHSRW160x0000 00060x4843 E2060x4844 02060x4844 2206
EPWM_TBCNTRW160x0000 00080x4843 E2080x4844 02080x4844 2208
EPWM_TBPRDRW160x0000 000A0x4843 E20A0x4844 020A0x4844 220A
EPWM_CMPCTLRW160x0000 000E0x4843 E20E0x4844 020E0x4844 220E
HRPWM_CMPAHRRW160x0000 00100x4843 E2100x4844 02100x4844 2210
EPWM_CMPARW160x0000 00120x4843 E2120x4844 02120x4844 2212
EPWM_CMPBRW160x0000 00140x4843 E2140x4844 02140x4844 2214
EPWM_AQCTLARW160x0000 00160x4843 E2160x4844 02160x4844 2216
EPWM_AQCTLBRW160x0000 00180x4843 E2180x4844 02180x4844 2218
EPWM_AQSFRCRW160x0000 001A0x4843 E21A0x4844 021A0x4844 221A
EPWM_AQCSFRCRW160x0000 001C0x4843 E21C0x4844 021C0x4844 221C
EPWM_DBCTLRW160x0000 001E0x4843 E21E0x4844 021E0x4844 221E
EPWM_DBREDRW160x0000 00200x4843 E2200x4844 02200x4844 2220
EPWM_DBFEDRW160x0000 00220x4843 E2220x4844 02220x4844 2222
EPWM_TZSELRW160x0000 00240x4843 E2240x4844 02240x4844 2224
EPWM_TZCTLRW160x0000 00280x4843 E2280x4844 02280x4844 2228
EPWM_TZEINTRW160x0000 002A0x4843 E22A0x4844 022A0x4844 222A
EPWM_TZFLGR160x0000 002C0x4843 E22C0x4844 022C0x4844 222C
EPWM_TZCLRRW160x0000 002E0x4843 E22E0x4844 022E0x4844 222E
EPWM_TZFRCRW160x0000 00300x4843 E2300x4844 02300x4844 2230
EPWM_ETSELRW160x0000 00320x4843 E2320x4844 02320x4844 2232
EPWM_ETPSRW160x0000 00340x4843 E2340x4844 02340x4844 2234
EPWM_ETFLGR160x0000 00360x4843 E2360x4844 02360x4844 2236
EPWM_ETCLRRW160x0000 00380x4843 E2380x4844 02380x4844 2238
EPWM_ETFRCRW160x0000 003A0x4843 E23A0x4844 023A0x4844 223A
EPWM_PCCTLRW160x0000 003C0x4843 E23C0x4844 023C0x4844 223C
HRPWM_HRCTLRW160x0000 00C00x4843 E2C00x4844 02C00x4844 22C0

29.2.59 PWMSS_EPWM Register Description

Table 29-51 EPWM_TBCTL
Address Offset0x0000 0000
Physical Address0x4843 E200
0x4844 0200
0x4844 2200
InstancePWMSS1_EPWM
PWMSS2_EPWM
PWMSS3_EPWM
Description
TypeRW
1514131211109876543210
FREE_SOFTPHSDIRCLKDIV var tiPageName = 'Literature reader-SPRUHZ7K-ja_JP'; var tiDocType = 'Technical Reference'; var tiLibraryStore = new com.TI.tiLibrary.tiLibraryStore(); var tiLibraryViewerStore = tiLibraryStore.viewer_store; RiotControl.addStore(tiLibraryStore); var subRoutes = riot.route.create(); subRoutes("/document-viewer/*/datasheet/*\\?*#*", function(gpn, url, params, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + gpn + "/datasheet/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/datasheet/*#*", function(gpn, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + gpn + "/datasheet/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/datasheet/*", function(gpn, url) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + gpn + "/datasheet/" + url, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/*/datasheet/*\\?*#*", function(locale, gpn, url, params, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/" + gpn + "/datasheet/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/*/datasheet/*#*", function(locale, gpn, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/" + gpn + "/datasheet/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/*/datasheet/*", function(locale, gpn, url) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/" + gpn + "/datasheet/" + url, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/datasheet#*/*", function(gpn, url, fragment) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + gpn + "/datasheet#" + url + "/" + fragment, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/*/datasheet#*/*", function(locale, gpn, url, fragment) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/" + gpn + "/datasheet#" + url + "/" + fragment, toc: true, set_content: true }); }); subRoutes("/document-viewer/lit/html/*", function(litnum) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/lit/html/" + litnum, toc: true, set_content: true }); }); subRoutes("/document-viewer/lit/html/*/*\\?*#*", function(litnum, url, params, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/lit/html/" + litnum + "/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/lit/html/*/*#*", function(litnum, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/lit/html/" + litnum + "/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/lit/html/*#*/*", function(litnum, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/lit/html/" + litnum + "#" + url + "/" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/lit/html/*#*/*", function(locale, litnum, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/lit/html/" + litnum + "#" + url + "/" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/lit/html/*/*", function(litnum, url) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/lit/html/" + litnum + "/" + url, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/lit/html/*/*\\?*#*", function(locale, litnum, url, params, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/lit/html/" + litnum + "/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/lit/html/*/*#*", function(locale, litnum, url, anchor) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/lit/html/" + litnum + "/" + url + "#" + anchor, toc: true, set_content: true }); }); subRoutes("/document-viewer/*/lit/html/*/*", function(locale, litnum, url) { RiotControl.trigger("ti_library_open_viewer", { document: tiLibraryViewerStore.document, documentLocale: tiLibraryViewerStore.documentLocale, url: "/document-viewer/" + locale + "/lit/html/" + litnum + "/" + url, toc: true, set_content: true }); }); var compose_url = function(q) { //URL format: scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment] var tempUrl = q.url.replace("//www.ti.com/", ""); var url = tempUrl.replace("//www.ti.com/", ""); if (q.search != null) { var params = ""; var hash = ""; var url_parts = url.split('#'); if (url_parts.length == 2) { url = url_parts[0]; hash = url_parts[1]; } var param_parts = url.split('?'); if (param_parts.length == 2) { url = param_parts[0]; var parsed_params = param_parts[1].split('&'); var keyword_param_found = false; for (var i = 0; i < parsed_params.length; i++) { if (parsed_params[i].indexOf('search=') == 0) { keyword_param_found = true; parsed_params[i] = 'search=' + q.search; } } if (!keyword_param_found) { parsed_params.push('search=' + q.search); } params = parsed_params.join('&'); } else { params = 'search=' + q.search; } if (params > "") { url = url + '?' + params; } if (hash > "") { url = url + '#' + hash; } } return url; }; tiLibraryViewerStore.compose_url_route = function(location, q) { return compose_url(q); }; tiLibraryViewerStore.compute_content_href = function(href, url) { return url; }; tiLibraryViewerStore.compose_topic_url = function(location, q) { return compose_url(q); }; tiLibraryViewerStore.important_notice_url = "//www.ti.com/document-viewer/ja-jp/lit/html/SPRUHZ7K/important_notice#ImpNotice001"; var ods_reader = riot.mount('ti-library-viewer', { store: tiLibraryStore.list_store, viewerstore: tiLibraryViewerStore }); riot.route.base('/'); riot.route.start(true); compute_document_locale = function(docName) { var locale = 'en_US'; if (docName) { if (docName.toLowerCase().indexOf('z')===0) { locale = 'zh_CN'; } else if (docName.toLowerCase().indexOf('j') == 0) { locale = 'ja_JP'; } } return locale; } open_reader = function() { var path = window.location.pathname.split('/'); var path_minus_filename = ''; for (var i = 0; i < path.length - 1; i++) { if (i == 0 && path[i] == '') { console.log("double slashes found in beginning of document path; treating document path as local machine path"); continue; } path_minus_filename += "/" + path[i]; } RiotControl.trigger("ti_library_open_viewer", { documentLocale: compute_document_locale( "SPRUHZ7K"), document: { href: path_minus_filename, lit_num: "SPRUHZ7K", doc_type: "Technical Reference", show_toc: "true", translated_doc_type: "User guide", gpn: "", title: "AM571x (SR2.1, SR2.0, SR1.0) AM570x (SR2.1, SR2.0) Sitara Processors Texas Instruments Sitara Families of Products", disclaimer: "", product: "//www.ti.com/product/ja-jp/", email: 'mailto:?subject=SPRUHZ7K AM571x (SR2.1, SR2.0, SR1.0) AM570x (SR2.1, SR2.0) Sitara Processors Texas Instruments Sitara Families of Products&body=http://www.ti.com/document-viewer/ja-jp/lit/html/SPRUHZ7', download: '//www.ti.com/jp/lit/pdf/SPRUHZ7K', tistore: '//store.ti.com/Search.aspx?k=&pt=-1', productstatusdescription: '' }, url: "/document-viewer/ja-jp//datasheet/GUID-0984CE86-4874-48F9-A8D2-CE7045CAB1C5", prepopulated: true, modalOptions: { dismissible: false } }); } open_reader();