SPRUIV4D May   2020  – May 2024

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation
    3.     Trademarks
  3. 2Introduction
    1. 2.1 C7000 Digital Signal Processor CPU Architecture Overview
    2. 2.2 C7000 Split Datapath and Functional Units
  4. 3C7000 C/C++ Compiler Options
    1. 3.1 Overview
    2. 3.2 Selecting Compiler Options for Performance
    3. 3.3 Understanding Compiler Optimization
      1. 3.3.1 Software Pipelining
      2. 3.3.2 Vectorization and Vector Predication
      3. 3.3.3 Automatic Use of Streaming Engine and Streaming Address Generator
      4. 3.3.4 Loop Collapsing and Loop Coalescing
      5. 3.3.5 Automatic Inlining
      6. 3.3.6 If Conversion
  5. 4Basic Code Optimization
    1. 4.1  Signed Types for Iteration Counters and Limits
    2. 4.2  Floating-Point Division
    3. 4.3  Loop-Carried Dependencies and the Restrict Keyword
      1. 4.3.1 Loop-Carried Dependencies
      2. 4.3.2 The Restrict Keyword
      3. 4.3.3 Run-Time Alias Disambiguation
    4. 4.4  Function Calls and Inlining
    5. 4.5  MUST_ITERATE and PROB_ITERATE Pragmas and Attributes
    6. 4.6  If Statements and Nested If Statements
    7. 4.7  Intrinsics
    8. 4.8  Vector Types
    9. 4.9  C++ Features to Use and Avoid
    10. 4.10 Streaming Engine
    11. 4.11 Streaming Address Generator
    12. 4.12 Optimized Libraries
    13. 4.13 Memory Optimizations
  6. 5Understanding the Assembly Comment Blocks
    1. 5.1 Software Pipelining Processing Stages
    2. 5.2 Software Pipeline Information Comment Block
      1. 5.2.1 Loop and Iteration Count Information
      2. 5.2.2 Dependency and Resource Bounds
      3. 5.2.3 Initiation Interval (ii) and Iterations
      4. 5.2.4 Constant Extensions
      5. 5.2.5 Resources Used and Register Tables
      6. 5.2.6 Stage Collapsing
      7. 5.2.7 Memory Bank Conflicts
      8. 5.2.8 Loop Duration Formula
    3. 5.3 Single Scheduled Iteration Comment Block
    4. 5.4 Identifying Pipeline Failures and Performance Issues
      1. 5.4.1 Issues that Prevent a Loop from Being Software Pipelined
      2. 5.4.2 Software Pipeline Failure Messages
      3. 5.4.3 Performance Issues
  7. 6Revision History

Streaming Engine

The C7100 CPU has two streaming engines. A streaming engine is a feature of the C7000 CPU cores that aids in loading data from memory to the CPU. The streaming engines can significantly improve the performance of the memory hierarchy by prefetching data from memory to a location near the CPU. Prefetching data can significantly reduce the time needed to bring data into the CPU. It may also reduce the number of L1 data cache capacity misses as the L1 cache is bypassed for data accessed through the streaming engine.

The streaming engine supports up to a six-dimensional address access pattern. When the performance bottleneck involves reads from memory (if D unit resource bound dominates or cache misses dominate), consider using one or both of the streaming engines if the access pattern to the objects in memory is known in advance. Streaming engines have the greatest effect when used in conjunction with loops that are vectorized by hand. For more information on the streaming engine and code examples, please see the C71x DSP CPU, Instruction Set, and Matrix Multiply Accelerator Technical Reference Manual (SPRUIP0), the C7000 Optimizing C/C++ Compiler User’s Guide (SPRUIG8), and the c7x_strm.h file in the include directory of the compiler's installation directory.

The C7000 compiler does not yet make automatic use of the streaming engine feature.