SPRUIY2 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation from Texas Instruments
    3.     Glossary
    4.     Support Resources
    5.     Trademarks
  3. 1Architecture Overview
    1. 1.1 Introduction to the CPU
    2. 1.2 Data Type
    3. 1.3 C29x CPU System Architecture
      1. 1.3.1 Emulation Logic
      2. 1.3.2 CPU Interface Buses
    4. 1.4 Memory Map
  4. 2Central Processing Unit (CPU)
    1. 2.1 C29x CPU Architecture
      1. 2.1.1 Features
      2. 2.1.2 Block Diagram
    2. 2.2 CPU Registers
      1. 2.2.1 Addressing Registers (Ax/XAx)
      2. 2.2.2 Fixed-Point Registers (Dx/XDx)
      3. 2.2.3 Floating Point Register (Mx/XMx)
      4. 2.2.4 Program Counter (PC)
      5. 2.2.5 Return Program Counter (RPC)
      6. 2.2.6 Status Registers
        1. 2.2.6.1 Interrupt Status Register (ISTS)
        2. 2.2.6.2 Decode Phase Status Register (DSTS)
        3. 2.2.6.3 Execute Phase Status Register (ESTS)
    3. 2.3 Instruction Packing
      1. 2.3.1 Standalone Instructions and Restrictions
      2. 2.3.2 Instruction Timeout
    4. 2.4 Stacks
      1. 2.4.1 Software Stack
      2. 2.4.2 Protected Call Stack
      3. 2.4.3 Real Time Interrupt / NMI Stack
  5. 3Interrupts
    1. 3.1 CPU Interrupts Architecture Block Diagram
    2. 3.2 RESET, NMI, RTINT, and INT
      1. 3.2.1 RESET (CPU reset)
      2. 3.2.2 NMI (Non-Maskable Interrupt)
      3. 3.2.3 RTINT (Real Time Interrupt)
      4. 3.2.4 INT (Low-Priority Interrupt)
    3. 3.3 Conditions Blocking Interrupts
      1. 3.3.1 ATOMIC Counter
    4. 3.4 CPU Interrupt Control Registers
      1. 3.4.1 Interrupt Status Register (ISTS)
      2. 3.4.2 Decode Phase Status Register (DSTS)
      3. 3.4.3 Interrupt-Related Stack Registers
    5. 3.5 Interrupt Nesting
      1. 3.5.1 Interrupt Nesting Example Diagram
    6. 3.6 Security
      1. 3.6.1 Overview
      2. 3.6.2 LINK
      3. 3.6.3 STACK
      4. 3.6.4 ZONE
  6. 4Pipeline
    1. 4.1  Introduction
    2. 4.2  Decoupled Pipeline Phases
    3. 4.3  Dual Instruction Prefetch Buffers
    4. 4.4  Pipeline Advancement and Stalls
    5. 4.5  Pipeline Hazards and Protection Mechanisms
    6. 4.6  Register Updates and Corresponding Pipeline Phases
    7. 4.7  Register Reads and Writes During Normal Operation
    8. 4.8  D2 Read Protection
    9. 4.9  E1 Read Protection
    10. 4.10 WAW Protection
    11. 4.11 Protection During Interrupt
  7. 5Addressing Modes
    1. 5.1 Addressing Modes Overview
      1. 5.1.1 Documentation and Implementation
      2. 5.1.2 List of Addressing Mode Types
        1. 5.1.2.1 Additional Types of Addressing
      3. 5.1.3 Addressing Modes Summarized
    2. 5.2 Addressing Mode Fields
      1. 5.2.1 ADDR1 Field
      2. 5.2.2 ADDR2 Field
      3. 5.2.3 ADDR3 Field
      4. 5.2.4 DIRM Field
      5. 5.2.5 Additional Fields
    3. 5.3 Alignment and Pipeline Considerations
      1. 5.3.1 Alignment
      2. 5.3.2 Pipeline Considerations
    4. 5.4 Types of Addressing Modes
      1. 5.4.1 Direct Addressing
      2. 5.4.2 Pointer Addressing
        1. 5.4.2.1 Pointer Addressing with #Immediate Offset
        2. 5.4.2.2 Pointer Addressing with Pointer Offset
        3. 5.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
        4. 5.4.2.4 Pointer Addressing with Pointer Increment/Decrement
      3. 5.4.3 Stack Addressing
        1. 5.4.3.1 Allocating and De-allocating Stack Space
      4. 5.4.4 Circular Addressing Instruction
      5. 5.4.5 Bit Reversed Addressing Instruction
  8. 6Safety and Security Unit (SSU)
    1. 6.1 SSU Overview
    2. 6.2 Links and Task Isolation
    3. 6.3 Sharing Data Outside Task Isolation Boundary
    4. 6.4 Protected Call and Return
  9. 7Emulation
    1. 7.1 Overview of Emulation Features
    2. 7.2 Debug Terminology
    3. 7.3 Debug Interface
    4. 7.4 Execution Control Mode
    5. 7.5 Breakpoints, Watchpoints, and Counters
      1. 7.5.1 Software Breakpoint
      2. 7.5.2 Hardware Debugging Resources
        1. 7.5.2.1 Hardware Breakpoint
        2. 7.5.2.2 Hardware Watchpoint
        3. 7.5.2.3 Benchmark Counters
      3. 7.5.3 PC Trace
  10. 8Revision History

Allocating and De-allocating Stack Space

Stack space can be allocated and de-allocated as shown in the following examples:

Allocate 32-bytes (must be a multiple of 8-bytes):

ADD.U16    A15,A15,#32    ; SP = SP + 32

De-allocate 32-bytes (must be a multiple of 8-bytes):

SUB.U16    A15,A15,#32    ; SP = SP - 32

The compiler automatically allocates and de-allocates stack space and forces alignment to the 64-bit word boundary.

It is also possible to use the *(A15++#u8imm) addressing mode to push something on the stack and also allocate additional stack space if required and if the stack size is less than 256 bytes. For example:

ST.64   *(A15++#32),XD0     ; Push 64-bit XD0 value on stack, then allocate 
                            ; 32 bytes on stack (SP = SP + 32)

Similarly you can de-allocate and pop something from the stack using the *(A15 -= #n8imm) addressing mode. For example:

LD.64   XD0,*(A15-=#32)     ; De-allocate 32-bytes from stack (SP = SP - 32), 
                            ; and pop 64-bit value from stack into XD0

If required to access a value on the stack that is a distance greater than 8192 bytes, an addressing pointer needs to be used to access the value. For example: to access a 32-bit value that is 8216 bytes away from top of stack:

SUB.U16     A0,A15,#8216    ; A0 = SP - #8216
LD.32	D0,*A0          ; D0 = contents of stack at SP-8216

Typically, for large stacks, the compiler allocates one of the Ax addressing mode registers as a frame pointer and can use the available pointer addressing modes to index into the stack.

The above approach can also be used to initialize pointers within the stack for situations where local variables located on stack need to be accessed frequently or if required to use pointer increment/decrement operations on the data.

Note that regardless of the addressing mode used, any stack memory access must be aligned to the accessed word size and any non-aligned access generates a fault. The compiler takes care of alignment of any data on the stack space.

Note:
  1. If a pointer is used to access the stack contents, assume that the value is appropriately aligned to the right word access size. If the value gets corrupted, it can cause an access fault.
  2. The CALL operations automatically push the RPC (return PC) value on the stack and increment the stack pointer by 8, hence always keeping stack alignment. The 32-bit RPC is stored in the lower 32-bits of the 64-bit word. Similarly, a RET operation pops the RPC value from the stack and decrements the SP by 8 maintaining stack alignment. If the stack pointer is not aligned when exexcuting the CALL or RET operation, a fault is generated.