SPRUIY2 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation from Texas Instruments
    3.     Glossary
    4.     Support Resources
    5.     Trademarks
  3. 1Architecture Overview
    1. 1.1 Introduction to the CPU
    2. 1.2 Data Type
    3. 1.3 C29x CPU System Architecture
      1. 1.3.1 Emulation Logic
      2. 1.3.2 CPU Interface Buses
    4. 1.4 Memory Map
  4. 2Central Processing Unit (CPU)
    1. 2.1 C29x CPU Architecture
      1. 2.1.1 Features
      2. 2.1.2 Block Diagram
    2. 2.2 CPU Registers
      1. 2.2.1 Addressing Registers (Ax/XAx)
      2. 2.2.2 Fixed-Point Registers (Dx/XDx)
      3. 2.2.3 Floating Point Register (Mx/XMx)
      4. 2.2.4 Program Counter (PC)
      5. 2.2.5 Return Program Counter (RPC)
      6. 2.2.6 Status Registers
        1. 2.2.6.1 Interrupt Status Register (ISTS)
        2. 2.2.6.2 Decode Phase Status Register (DSTS)
        3. 2.2.6.3 Execute Phase Status Register (ESTS)
    3. 2.3 Instruction Packing
      1. 2.3.1 Standalone Instructions and Restrictions
      2. 2.3.2 Instruction Timeout
    4. 2.4 Stacks
      1. 2.4.1 Software Stack
      2. 2.4.2 Protected Call Stack
      3. 2.4.3 Real Time Interrupt / NMI Stack
  5. 3Interrupts
    1. 3.1 CPU Interrupts Architecture Block Diagram
    2. 3.2 RESET, NMI, RTINT, and INT
      1. 3.2.1 RESET (CPU reset)
      2. 3.2.2 NMI (Non-Maskable Interrupt)
      3. 3.2.3 RTINT (Real Time Interrupt)
      4. 3.2.4 INT (Low-Priority Interrupt)
    3. 3.3 Conditions Blocking Interrupts
      1. 3.3.1 ATOMIC Counter
    4. 3.4 CPU Interrupt Control Registers
      1. 3.4.1 Interrupt Status Register (ISTS)
      2. 3.4.2 Decode Phase Status Register (DSTS)
      3. 3.4.3 Interrupt-Related Stack Registers
    5. 3.5 Interrupt Nesting
      1. 3.5.1 Interrupt Nesting Example Diagram
    6. 3.6 Security
      1. 3.6.1 Overview
      2. 3.6.2 LINK
      3. 3.6.3 STACK
      4. 3.6.4 ZONE
  6. 4Pipeline
    1. 4.1  Introduction
    2. 4.2  Decoupled Pipeline Phases
    3. 4.3  Dual Instruction Prefetch Buffers
    4. 4.4  Pipeline Advancement and Stalls
    5. 4.5  Pipeline Hazards and Protection Mechanisms
    6. 4.6  Register Updates and Corresponding Pipeline Phases
    7. 4.7  Register Reads and Writes During Normal Operation
    8. 4.8  D2 Read Protection
    9. 4.9  E1 Read Protection
    10. 4.10 WAW Protection
    11. 4.11 Protection During Interrupt
  7. 5Addressing Modes
    1. 5.1 Addressing Modes Overview
      1. 5.1.1 Documentation and Implementation
      2. 5.1.2 List of Addressing Mode Types
        1. 5.1.2.1 Additional Types of Addressing
      3. 5.1.3 Addressing Modes Summarized
    2. 5.2 Addressing Mode Fields
      1. 5.2.1 ADDR1 Field
      2. 5.2.2 ADDR2 Field
      3. 5.2.3 ADDR3 Field
      4. 5.2.4 DIRM Field
      5. 5.2.5 Additional Fields
    3. 5.3 Alignment and Pipeline Considerations
      1. 5.3.1 Alignment
      2. 5.3.2 Pipeline Considerations
    4. 5.4 Types of Addressing Modes
      1. 5.4.1 Direct Addressing
      2. 5.4.2 Pointer Addressing
        1. 5.4.2.1 Pointer Addressing with #Immediate Offset
        2. 5.4.2.2 Pointer Addressing with Pointer Offset
        3. 5.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
        4. 5.4.2.4 Pointer Addressing with Pointer Increment/Decrement
      3. 5.4.3 Stack Addressing
        1. 5.4.3.1 Allocating and De-allocating Stack Space
      4. 5.4.4 Circular Addressing Instruction
      5. 5.4.5 Bit Reversed Addressing Instruction
  8. 6Safety and Security Unit (SSU)
    1. 6.1 SSU Overview
    2. 6.2 Links and Task Isolation
    3. 6.3 Sharing Data Outside Task Isolation Boundary
    4. 6.4 Protected Call and Return
  9. 7Emulation
    1. 7.1 Overview of Emulation Features
    2. 7.2 Debug Terminology
    3. 7.3 Debug Interface
    4. 7.4 Execution Control Mode
    5. 7.5 Breakpoints, Watchpoints, and Counters
      1. 7.5.1 Software Breakpoint
      2. 7.5.2 Hardware Debugging Resources
        1. 7.5.2.1 Hardware Breakpoint
        2. 7.5.2.2 Hardware Watchpoint
        3. 7.5.2.3 Benchmark Counters
      3. 7.5.3 PC Trace
  10. 8Revision History

Additional Fields

In addition to the addressing mode fields, there are #immediate fields that are used within the actual addressing modes, such as "#u10imm" in the "*(Ax+#u10imm)" addressing mode. Most of these #immediate fields (also called constants) are self explanatory (for example, #u10imm is an unsigned 10-bit immediate).

However, there are two negative #immediate fields that are explained in further detail using a table for clarity:

#n13imm Field

The #n13imm field is a 13-bit negative offset #immediate used in the "*(A15-#n13imm)" addressing mode. This addressing mode is one of the available ADDR1 fields (requires 16 bits for encoding) and is of type "Stack Addressing".

A negative 13-bit value is provided using this #immediate, and bits 13 to 31 are padded with 1s to create the 32-bit negative offset constant.

Note: Bits 13 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to the addressing register.
Table 5-6 #n13imm Field Encoding
1211109876543210Encoded ValueSign-extended Value
11111111111111-1
11111111111102-2
...
10000000000014095-4095
10000000000004096-4096
01111111111114097-4097
...
00000000000018191-8191
00000000000008192-8192

#n8imm Field

The #n8imm field is a 8-bit negative offset #immediate used in the following addressing modes:

  • n
  • *(Ax--#n8imm), which is addressing mode type "Pointer Addressing With #Immediate Increment/Decrement"
  • *(Ax-=#n8imm), which is addressing mode type "Pointer Addressing With #Immediate Increment/Decrement"
  • *(A15-=#n8imm), which is addressing mode type "Stack Addressing"

These addressing modes are all part of the available ADDR1 fields (all require 16 bits for encoding).

A negative 8-bit value is provided using this #immediate, and bits 8 to 31 are padded with 1s to create the 32-bit negative offset constant.

Note: Bits 8 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to addressing register.
Table 5-7 #n8imm Field Encoding
76543210Encoded ValueSign-extended Value
111111111-1
111111102-2
...
10000001127-127
10000000128-128
01111111129-129
...
00000001255-255
00000000256-256