SPRUJ85A April   2024  – August 2024

PRODUCTION DATA  

  1.   1
  2.   Description
  3. 1Key Features
  4. 2LaunchPad Module Overview
    1. 3.1 Introduction
    2. 3.2 Preface: Read This First
      1. 3.2.1 If You Need Assistance
      2. 3.2.2 Important Usage Notes
    3. 3.3 Kit Contents
    4. 3.4 Device Information
      1. 3.4.1 System Architecture Overview
      2. 3.4.2 Security
      3. 3.4.3 Compliance
      4. 3.4.4 BoosterPacks
      5. 3.4.5 Component Identification
  5. 3Hardware Description
    1. 4.1  Board Setup
      1. 4.1.1 Power Requirements
        1. 4.1.1.1 Power Input Using USB Type-C Connector
        2. 4.1.1.2 Power Status LEDs
        3. 4.1.1.3 Power Tree
      2. 4.1.2 Push Buttons
      3. 4.1.3 Boot mode Selection
      4. 4.1.4 IO Expander
    2. 4.2  Functional Block Diagram
    3. 4.3  GPIO Mapping
    4. 4.4  Reset
    5. 4.5  Clock
    6. 4.6  Memory Interfaces
      1. 4.6.1 OSPI
      2. 4.6.2 MMC
      3. 4.6.3 eMMC
      4. 4.6.4 Board ID EEPROM
    7. 4.7  Ethernet Interface
      1. 4.7.1 Ethernet PHY #1 - CPSW RGMII/ICSSM
      2. 4.7.2 Ethernet PHY #2 - CPSW RGMII/ICSSM
      3. 4.7.3 LED Indication in RJ45 Connector
    8. 4.8  I2C
    9. 4.9  Industrial Application LEDs
    10. 4.10 SPI
    11. 4.11 UART
    12. 4.12 MCAN
    13. 4.13 FSI
    14. 4.14 JTAG
    15. 4.15 TIVA and Test Automation Header
    16. 4.16 LIN
    17. 4.17 ADC and DAC
    18. 4.18 EQEP and SDFM
    19. 4.19 EPWM
    20. 4.20 BoosterPack Headers
    21. 4.21 Pinmux Mapping
  6. 4Additional Information
    1.     Trademarks
    2. 5.1 Sitara MCU+ Academy
    3. 5.2 Known Board Changes/Issues
      1. 5.2.1 OSPI DQS and LBCLK nets swap
      2. 5.2.2 XDS110 Debugger Bricking Issue
      3. 5.2.3 eMMC CMD and CLK nets swap
  7. 5References
    1. 6.1 Reference Documents
    2. 6.2 Other TI Components Used in This Design
  8. 6Revision History

TIVA and Test Automation Header

The board supports two test automation features:

  • A USB-based virtual COM port, using the TIVA Test Automation Header.
    • The header allows an external controller to manipulate basic operations such as power down, PORz, warm reset, and boot mode control.
    • The AM263Px SOC I2C instance is connected to the TIVA Test Automation Header - FH12A-402-0.55H.
  • A 40 pin test automation header that allows an external controller to manipulate basic operations such as power down, PORz, warm reset, and boot mode control.
    • The Test Automation Circuit is powered by a dedicated 3.3V power supply (VSYS_TA_3V3) which is generated by a 5V to 3.3V buck regulator (TPS62177DQCR).

    • The AM263Px SoC I2C3 instance is connected to both the Test Automation Header and the boot mode IO expander (TCA6408ARGTR).


AM263P Test Automation Header

Figure 3-25 Test Automation Header

The following table details the Test Automation mapping.

Table 3-18 Test Automation GPIO and I2C Mapping
Signal NameDescriptionDirection
TA_POWERDOWNZWhen logic low, disables the 3.3V buck regulator that is used in the first stage of DC/DC conversionOutput
TA_PORZWhen logic low, connects the PORz signal to ground due to PMOS VGS being less than zero creating a power on reset to the MAIN domainOutput
TA_RESETZWhen logic low, connects the WARM RESETn signal to ground due to PMOS VGS being less than zero creating a warm reset to the MAIN domainOutput
TA_GPIO1When logic low, connects the INTn signal to ground due to PMOS VGS being less than zero creating an interrupt to SoCOutput
TA_GPIO3When logic low, disables the boot mode buffer output enableOutput
TA_GPIO4Reset signal for boot mode IO ExpanderOutput
TA_I2C_SCLI2C Clock signal used to communicate with bootmode IO expander to change the boot modes. Output
TA_I2C_SDA I2C Data signal used to communicate with bootmode IO expander to change the boot modes. Output