SPRUJF4A October   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
    5.     General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  7. 2Hardware
    1. 2.1 Hardware Description
      1. 2.1.1 Auxiliary Power Supply
      2. 2.1.2 DC Link Voltage Sensing
      3. 2.1.3 Motor Phase Voltage Sensing
      4. 2.1.4 Motor Phase Current Sensing
        1. 2.1.4.1 Three-Shunt Current Sensing
        2. 2.1.4.2 Single-Shunt Current Sensing
      5. 2.1.5 External Overcurrent Protection
      6. 2.1.6 Internal Overcurrent Protection for TMS320F2800F137
    2. 2.2 Getting Started Hardware
      1. 2.2.1 Test Conditions and Equipment
      2. 2.2.2 Test Setup
  8. 3Motor Control Software
    1. 3.1 Three-Phase PMSM Drive System Design Theory
      1. 3.1.1 Field-Oriented Control of PMSM
        1. 3.1.1.1 Space Vector Definition and Projection
          1. 3.1.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
          2. 3.1.1.1.2 ( α , β ) ⇒ ( d ,   q ) Park Transformation
        2. 3.1.1.2 Basic Scheme of FOC for AC Motor
        3. 3.1.1.3 Rotor Flux Position
      2. 3.1.2 Sensorless Control of PM Synchronous Motor
        1. 3.1.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
          1. 3.1.2.1.1 Mathematical Model and FOC Structure of an IPMSM
          2. 3.1.2.1.2 Design of ESMO for the IPMS
            1. 3.1.2.1.2.1 Rotor Position and Speed Estimation With PLL
      3. 3.1.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
    2. 3.2 Getting Started Software
      1. 3.2.1 GUI
      2. 3.2.2 Download and Install C2000 Software
      3. 3.2.3 Using the Software
      4. 3.2.4 Project Structure
  9. 4Test Procedure and Results
    1. 4.1 Build Level 1: CPU and Board Setup
    2. 4.2 Build Level 2: Open-Loop Check With ADC Feedback
    3. 4.3 Build Level 3: Closed Current Loop Check
    4. 4.4 Build Level 4: Full Motor Drive Control
    5. 4.5 Test Procedure
      1. 4.5.1 Startup
      2. 4.5.2 Build and Load Project
      3. 4.5.3 Setup Debug Environment Windows
      4. 4.5.4 Run the Code
        1. 4.5.4.1 Build Level 1 Test Procedure
        2. 4.5.4.2 Build Level 2 Test Procedure
        3. 4.5.4.3 Build Level 3 Test Procedure
        4. 4.5.4.4 Build Level 4 Test Procedure
          1. 4.5.4.4.1 Tuning Motor Drive FOC Parameters
          2. 4.5.4.4.2 Tuning Field Weakening and MTPA Control Parameters
          3. 4.5.4.4.3 Tuning Current Sensing Parameters
    6. 4.6 Performance Data and Results
      1. 4.6.1 Load and Thermal Test
      2. 4.6.2 Overcurrent Protection by External Comparator
      3. 4.6.3 Overcurrent Protection by Internal CMPSS
  10. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 PCB Layouts
    3. 5.3 Bill of Materials (BOM)
  11. 6Additional Information
    1. 6.1 Known Hardware or Software Issues
    2. 6.2 Trademarks
    3. 6.3 Terminology
  12. 7References
  13. 8Revision History
Rotor Position and Speed Estimation With PLL

With the arc tangent method, the accuracy of the position and velocity estimations are affected due to the existence of noise and harmonic components. To eliminate this issue, the PLL model can be used for velocity and position estimations in the sensorless control structure of the IPMSM. Section 3.1.2.1.2 illustrates the PLL structure used with SMO. The back-EMF estimations e^α and e^β can be used with a PLL model to estimate the motor angular velocity and position as shown in Figure 3-16.

TIEVM-MTR-HVINV Block Diagram of Phase-Locked Loop Position TrackerFigure 3-16 Block Diagram of Phase-Locked Loop Position Tracker

Since eα=Ecosθe, eβ=Esinθe, and E=ωeλpm, the position error can be defined as Equation 35:

Equation 35. ε=e^βcosθ^e-e^αsinθ^e=Esinθecosθ^e-Ecosθesinθ^e=Esin(θe-θ^e)

where

  • E is the magnitude of the EEMF, which is proportional to the motor speed ωe

When (θe-θ^e)<π2, then Equation 35 can be simplified as Equation 36.

Equation 36. ε=E(θe-θ^e)

Further, the position error after the normalization of the EEMF can be obtained (Equation 37):

Equation 37. εn=θe-θ^e

According to the analysis, the simplified block diagram of the quadrature phase-locked loop position tracker can be obtained as shown in Figure 3-17. The closed-loop transfer functions of the PLL can be expressed as Equation 38:

Equation 38. θ^eθe=kps+kis2+kps+ki=2ξωns+ωn2s2+2ξωns+ωn2

where

  • kp and ki are the proportional and the integral gains of the standard PI regulator

The natural frequency ωn and the damping ratio ξ are given in Equation 39:

Equation 39. kp=2ξωn,  ki=ωn2
TIEVM-MTR-HVINV Simplified Block Diagram of Phase-Locked Loop Position TrackerFigure 3-17 Simplified Block Diagram of Phase-Locked Loop Position Tracker