SPRUJF4A October   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
    5.     General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  7. 2Hardware
    1. 2.1 Hardware Description
      1. 2.1.1 Auxiliary Power Supply
      2. 2.1.2 DC Link Voltage Sensing
      3. 2.1.3 Motor Phase Voltage Sensing
      4. 2.1.4 Motor Phase Current Sensing
        1. 2.1.4.1 Three-Shunt Current Sensing
        2. 2.1.4.2 Single-Shunt Current Sensing
      5. 2.1.5 External Overcurrent Protection
      6. 2.1.6 Internal Overcurrent Protection for TMS320F2800F137
    2. 2.2 Getting Started Hardware
      1. 2.2.1 Test Conditions and Equipment
      2. 2.2.2 Test Setup
  8. 3Motor Control Software
    1. 3.1 Three-Phase PMSM Drive System Design Theory
      1. 3.1.1 Field-Oriented Control of PMSM
        1. 3.1.1.1 Space Vector Definition and Projection
          1. 3.1.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
          2. 3.1.1.1.2 ( α , β ) ⇒ ( d ,   q ) Park Transformation
        2. 3.1.1.2 Basic Scheme of FOC for AC Motor
        3. 3.1.1.3 Rotor Flux Position
      2. 3.1.2 Sensorless Control of PM Synchronous Motor
        1. 3.1.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
          1. 3.1.2.1.1 Mathematical Model and FOC Structure of an IPMSM
          2. 3.1.2.1.2 Design of ESMO for the IPMS
            1. 3.1.2.1.2.1 Rotor Position and Speed Estimation With PLL
      3. 3.1.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
    2. 3.2 Getting Started Software
      1. 3.2.1 GUI
      2. 3.2.2 Download and Install C2000 Software
      3. 3.2.3 Using the Software
      4. 3.2.4 Project Structure
  9. 4Test Procedure and Results
    1. 4.1 Build Level 1: CPU and Board Setup
    2. 4.2 Build Level 2: Open-Loop Check With ADC Feedback
    3. 4.3 Build Level 3: Closed Current Loop Check
    4. 4.4 Build Level 4: Full Motor Drive Control
    5. 4.5 Test Procedure
      1. 4.5.1 Startup
      2. 4.5.2 Build and Load Project
      3. 4.5.3 Setup Debug Environment Windows
      4. 4.5.4 Run the Code
        1. 4.5.4.1 Build Level 1 Test Procedure
        2. 4.5.4.2 Build Level 2 Test Procedure
        3. 4.5.4.3 Build Level 3 Test Procedure
        4. 4.5.4.4 Build Level 4 Test Procedure
          1. 4.5.4.4.1 Tuning Motor Drive FOC Parameters
          2. 4.5.4.4.2 Tuning Field Weakening and MTPA Control Parameters
          3. 4.5.4.4.3 Tuning Current Sensing Parameters
    6. 4.6 Performance Data and Results
      1. 4.6.1 Load and Thermal Test
      2. 4.6.2 Overcurrent Protection by External Comparator
      3. 4.6.3 Overcurrent Protection by Internal CMPSS
  10. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 PCB Layouts
    3. 5.3 Bill of Materials (BOM)
  11. 6Additional Information
    1. 6.1 Known Hardware or Software Issues
    2. 6.2 Trademarks
    3. 6.3 Terminology
  12. 7References
  13. 8Revision History

Basic Scheme of FOC for AC Motor

Figure 3-6 summarizes the basic scheme of torque control with FOC. Note that this description assumes a two-shunt sensing system to align with the figure, but single and three-shunt sensing schemes are also common. Three-shunt control uses a somewhat different implementation of the Clarke transformation, while single-shunt requires programmatic phase current reconstruction prior to the Clarke transform. In any of these instances, the scheme is identical beginning with the ⍺ and β output of the Clarke transform.

TIEVM-MTR-HVINV Basic Scheme of FOC for AC MotorFigure 3-6 Basic Scheme of FOC for AC Motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module. The outputs of this projection are designated i and i. These two components of the current are the inputs of the Park transformation that calculates the current in the d,q rotating reference frame.

The isd and isq components are compared to the references isdref (the flux reference component) and isqref (the torque reference component). At this point, this control structure shows an interesting advantage: the structure can be used to control either synchronous or induction machines by simply changing the flux reference and obtaining rotor flux position.

In a PMSM, the rotor flux is fixed and determined by the magnets; there is no need to generate any flux. Hence, when controlling a PMSM, set isdref to zero. As an AC induction motor needs a rotor flux creation to operate, the flux reference must not be zero. This conveniently solves one of the major drawbacks of the classic control structures: the portability from asynchronous to synchronous drives.

The torque command isqref can be the output of the speed regulator when a speed FOC is used. The outputs of the current regulators are Vsdref and Vsqref; these outputs are applied to the inverse Park transformation. The outputs of this projection are Vsαref and Vsβref which are the components of the stator vector voltage in the (α, β) stationary orthogonal reference frame. These are the inputs of the Space Vector PWM. The outputs of this block are the signals that drive the inverter.

Note that both Park and inverse Park transformations need the rotor flux position. Obtaining this rotor flux position depends on the AC machine type (synchronous or asynchronous machine).