SPRUJF4A October   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
    5.     General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  7. 2Hardware
    1. 2.1 Hardware Description
      1. 2.1.1 Auxiliary Power Supply
      2. 2.1.2 DC Link Voltage Sensing
      3. 2.1.3 Motor Phase Voltage Sensing
      4. 2.1.4 Motor Phase Current Sensing
        1. 2.1.4.1 Three-Shunt Current Sensing
        2. 2.1.4.2 Single-Shunt Current Sensing
      5. 2.1.5 External Overcurrent Protection
      6. 2.1.6 Internal Overcurrent Protection for TMS320F2800F137
    2. 2.2 Getting Started Hardware
      1. 2.2.1 Test Conditions and Equipment
      2. 2.2.2 Test Setup
  8. 3Motor Control Software
    1. 3.1 Three-Phase PMSM Drive System Design Theory
      1. 3.1.1 Field-Oriented Control of PMSM
        1. 3.1.1.1 Space Vector Definition and Projection
          1. 3.1.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
          2. 3.1.1.1.2 ( α , β ) ⇒ ( d ,   q ) Park Transformation
        2. 3.1.1.2 Basic Scheme of FOC for AC Motor
        3. 3.1.1.3 Rotor Flux Position
      2. 3.1.2 Sensorless Control of PM Synchronous Motor
        1. 3.1.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
          1. 3.1.2.1.1 Mathematical Model and FOC Structure of an IPMSM
          2. 3.1.2.1.2 Design of ESMO for the IPMS
            1. 3.1.2.1.2.1 Rotor Position and Speed Estimation With PLL
      3. 3.1.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
    2. 3.2 Getting Started Software
      1. 3.2.1 GUI
      2. 3.2.2 Download and Install C2000 Software
      3. 3.2.3 Using the Software
      4. 3.2.4 Project Structure
  9. 4Test Procedure and Results
    1. 4.1 Build Level 1: CPU and Board Setup
    2. 4.2 Build Level 2: Open-Loop Check With ADC Feedback
    3. 4.3 Build Level 3: Closed Current Loop Check
    4. 4.4 Build Level 4: Full Motor Drive Control
    5. 4.5 Test Procedure
      1. 4.5.1 Startup
      2. 4.5.2 Build and Load Project
      3. 4.5.3 Setup Debug Environment Windows
      4. 4.5.4 Run the Code
        1. 4.5.4.1 Build Level 1 Test Procedure
        2. 4.5.4.2 Build Level 2 Test Procedure
        3. 4.5.4.3 Build Level 3 Test Procedure
        4. 4.5.4.4 Build Level 4 Test Procedure
          1. 4.5.4.4.1 Tuning Motor Drive FOC Parameters
          2. 4.5.4.4.2 Tuning Field Weakening and MTPA Control Parameters
          3. 4.5.4.4.3 Tuning Current Sensing Parameters
    6. 4.6 Performance Data and Results
      1. 4.6.1 Load and Thermal Test
      2. 4.6.2 Overcurrent Protection by External Comparator
      3. 4.6.3 Overcurrent Protection by Internal CMPSS
  10. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 PCB Layouts
    3. 5.3 Bill of Materials (BOM)
  11. 6Additional Information
    1. 6.1 Known Hardware or Software Issues
    2. 6.2 Trademarks
    3. 6.3 Terminology
  12. 7References
  13. 8Revision History

Hardware Description

The TIEVM-MTR-HVINV, when coupled with a control board (such as the TIEVM-MC-MODULE-F280013x), enables a complete motor drive system. Figure 2-1 shows an overview of the system.

TIEVM-MTR-HVINV Hardware Board Block Diagram
                    of TIEVM-MTR-HVINV Figure 2-1 Hardware Board Block Diagram of TIEVM-MTR-HVINV

The following is a list of the major functionalities of the TIEVM-MTR-HVINV, organized into blocks for ease of reference.

  • Power line 220VAC input filter and diode bridge rectifier
  • Bias power supply
    • +15 V and +3.3V generated from rectified AC input.
  • 3-phase inverter
    • Up to 750-W 3-phase inverter
    • 15-kHz switching frequency
  • Phase current shunt resistors and phase voltage signal conditioning
  • TIEVM-MC-MODULE-F280013x daughter card
    • Single C2000 family MCU in a 48-pin LQFP package
    • Analog sensing amplification and filtering
    • XDS110ISO-EVM UART-capable isolated debugger emulator board interface