SSZT089 March 2022 AM2631 , AM2631-Q1 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , AM263P4 , AM263P4-Q1
Not too long ago, widespread adoption of electric vehicles (EVs) was nothing but science fiction. Once thought too expensive or impractical, we are now in the midst of an EV revolution driven by OEMs’ desire to achieve zero emissions and explore alternative energy sources. Many car manufacturers have gone all-in by pledging all-EV lineups in the next 10 to 15 years.
Despite this momentum, we stand at an inflection point. EVs have made significant steps toward mainstream acceptance as drivers are looking for lower energy cost per mile and a fun driving experience that EVs can deliver. However, EVs are currently more expensive compared to internal combustion engine vehicles. There are also some concerns from drivers around range anxiety given the existing lack of charging stations, low driving range per charge, and the long charging time to get a full battery.
At the heart of every EV are power electronics systems: a traction inverter, onboard charger and high-voltage DC/DC converter, as shown in Figure 1. The performance of these systems will help define the acceleration and success of EV adoption in the coming years, as they directly impact an EV’s driving performance, cost, driving range, and charge time. The demand for more performance from these systems directly translates to demand for more microcontroller (MCU) performance, in terms of both real-time control and advanced computing.
Our new high-performance Sitara™ AM263 MCUs are the latest addition to the Sitara MCU family, and can help customers make progress in advancing the processing technology behind EVs. Sitara AM263 MCUs are the first devices in the Sitara MCU portfolio that pair the real-time control subsystem originated in C2000™ MCUs with the Sitara multicore Arm® architecture to meet the dynamic performance demands needed for motor and digital power control applications.
By combining real-time control and more than 3,000 Dhrystone million-instructions-per-second (DMIPS) computing performance, the AM263 MCU family can help reduce size and weight of the motor and mechanical enclosures as well as system cost, increasing driving range and helping to make EVs more affordable. The AM263 MCU family naturally leverages and extends the benefits of the C2000 real-time MCUs to offer even more options for EV powertrain applications.
For example:
With EVs and renewable energy comes the need for an extensive charging infrastructure and energy storage systems, as pictured in Figure 2. To be as common and as quick as a gas station, these systems need to be more efficient and higher power. The fundamental concept of these systems is power conversion, which enables grid-to-vehicle and vehicle-to-grid energy transfer in charging stations. And in energy storage systems, power conversion enables the storing of energy in batteries when demand is low and delivers it to the grid when demand is high, or when the renewable energy source is not generating. The real-time control subsystem integrated in the AM263 family delivers the necessary precision to lead the power conversion industry into the future. For example, with the AM263 MCU family you can now achieve:
The world around us is changing. Environmental and regulatory pressures for zero-emission vehicles and renewable energy sources are accelerating EV production, but widespread adoption will require increased affordability, efficiency and performance. Sitara AM263 MCUs, including the AM2634-Q1 and AM2634 devices, help deliver on the demands of these next-generation architectures. Get started with the AM263 family today and explore our application note, “AM263 for Traction Inverters”, and our easy-to-use MCU+ software development kit (SDK), or create and implement examples in just minutes with our TMDSCNC263 evaluation module (EVM) and MCU+ Academy.