SSZT413 september 2019 DRV5011 , TMP390
Note: Will Cooper and Robert Ferguson co-authored this technical article.
Trends in small consumer electronics have disrupted the industrial world, spiking a demand for smart but compact devices that enhance manufacturing (like proximity sensors in factory settings) and daily life (like temperature or magnetic sensors in consumer applications like refrigerators or vacuum robots). To achieve the smaller designs these applications require, design engineers must choose more compact chip sensors that deliver high accuracy in tiny form factors without sacrificing efficiency.
In this article, we will review advancements in industrial applications made possible by the smallest sensors on the market today – in this case temperature, Hall-effect and millimeter-wave (mmWave) sensors.
The TMP390 temperature switch, shown in Figure 1, offers fully integrated dual-channel threshold monitoring and built-in trip test. This solution enables over 60% area savings compared to an equivalent discrete implementation using negative temperature coefficients (NTCs), while significantly decreasing component count. Integration also brings the advantage of guaranteed temperature monitoring accuracy, with a variation of only ±1.5°C from 0°C to 70°C and ±3°C from -55°C to 130°C. Such high accuracy means that you can protect systems without sacrificing performance due to extensive temperature guard-banding in case of measurement uncertainty.
The low-profile DRV5011 supports the use of smaller magnets and offers more design flexibility. For example, it becomes possible to manufacture rotary dials used to adjust volume or electronic settings within a specific application with a smaller magnet to detect speed, direction and position, or the dial can be placed further away due to the DRV5011’s high sensitivity.
Table 1 lists additional end products that can take advantage of the small size of the DRV5011.
End product | DRV5011 benefits |
---|---|
Handheld drills | Enables the necessary placement of three Hall-effect latches on a board to monitor the speed, direction and location for the commutation of a small BLDC motor. |
Vacuum robots | Two DRV5011 sensors can easily measure the speed and direction of the wheels. Their small size supports flexibility in board placement. |
In addition to simplifying design, manufacturing and testing, AoP design also reduces overall antenna size by integrating the antenna onto the device, saving board space previously allocated for the antenna.
Regardless of the end device or real-world application, a wide variety of sensing technologies can support highly accurate, high-speed readings in the smallest of sizes. With so many options, design engineers shouldn’t have to sacrifice one benefit over another. Our portfolio of small-size sensors helps engineers get real-time information, autonomous protection, and improved system productivity and performance.