• Menu
  • Product
  • Email
  • PDF
  • Order now
  • Getting a Grip on Handheld Devices Is Easier with Capacitive Touch Sensing

    • SSZTAE1 february   2017 MSP430FR2532 , MSP430FR2533 , MSP430FR2632 , MSP430FR2633

       

  • CONTENTS
  • SEARCH
  • Getting a Grip on Handheld Devices Is Easier with Capacitive Touch Sensing
  1.   1
  2.   2
    1.     3
    2.     Additional Resources
  3. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content
Technical Article

Getting a Grip on Handheld Devices Is Easier with Capacitive Touch Sensing

Pradhyum Ramkumar

Get a grip – sometimes it is easier to get one than to detect it, unless your design has a microcontroller (MCU) with a specialized analog front-end that features capacitive touch sensing.

Grip detection is a real benefit in small handheld device applications, displayed in Figure 1, like remote-control units, test and measurement instruments (multimeters, probes), portable battery-operated power tools, video game accessories, virtual reality devices, and beauty and health products (shavers, hair dryers). Many of these systems involve a battery-operated device where low-power consumption is a critical factor. The last thing the end user wants to happen is to forget to turn off the device and find out later that the battery has been depleted. One of the benefits of grip detection is that it can lengthen battery life by automatically powering down all or much of the system when the user isn’t holding it.

GUID-20C153DD-9540-484B-AA9F-F094F2A87A75-low.png Figure 1 Grip Detection in Different Applications

Of course, no one wants a remote-control unit (or any device) that takes awhile to wake up before it’s useful. Microcontroller units (MCUs) like TI’s MSP430FR25x/26x devices with CapTIvate™ touch technology can not only implement a variety of grip-detection schemes, but also have features for proximity sensing, which can wake up the system even before it’s gripped. As part of the CapTIvate touch peripheral, these MSP430™ MCUs feature a finite state machine capable of monitoring as many as four touch sensors. While the system’s central processing unit (CPU) is in deep sleep mode, the sensors controlled by the state machine can detect a finger or hand 30cm away and wake up the CPU so that it can process the upcoming event. Each of the four sensors consumes as little as 0.9μA. This sleep mode also eliminates the need for the CPU to wake up periodically and scan the sensors, as is typical in most touch-based subsystems. The traditional CPU scanning process can drive power consumption up to as much as 20μA per sensor.

In addition to low power consumption, handheld device designers are always concerned with form factor: typically, the smaller the better. Because CapTIvate technology is a high-performance, high-resolution touch front-end, you can deploy smaller devices and smaller sensors to save space and still get the job done. But use cases in power tools and beauty products raise another issue: electromagnetic interference (EMI). EMI noise can trigger false detects for capacitive touch and must be eliminated.  CapTIvate technology has several built-in hardware and software features to improve robustness in the presence of EMI. Systems based on CapTIvate touch technology can pass EMI robustness standards such as International Electrotechnical Commission (IEC) 61000-4-6 and IEC 61000-4-2.

Capacitive Touch Grip Detection using CapTIvate™ Technology

Some devices with grip detection will likely require a significant number of sensors arranged in an array of some sort. MSP430FR25x/26x MCUs with CapTIvate technology have the advantage of supporting both self- and mutual-capacitance sensors in the same system and at the same time. Mutual-capacitance sensors are better suited for applications that require a large number of tightly spaced sensors and exposure to moisture. In power tools, for example, moisture resistance can be important since the end user may be sweating.

Additional Resources

  • Download the MSP430FR2633 Microcontroller CapTIvate Electronic Lock and Keypad Reference Design.
  • Get started with the MSP430 CapTIvate MCU Development Kit.
  • Learn more about CapTIvate MCUs in this technology guide.
  • Download the Noise Tolerant Capacitive Touch HMI Reference Design.
  • Interested in this topic? Read our other blog posts:
    • “Rain on this touch panel parade won’t matter.”
    • “Need a hand with messy jobs? TI’s CapTIvate technology can help..”

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale