SWRA794 June   2024 AWRL1432 , AWRL6432 , IWRL1432 , IWRL6432 , IWRL6432AOP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1 Acronyms Used in This Document
  5. 2Introduction
  6. 3Purpose of Calibrations
  7. 4Typical Stages of Calibration
    1. 4.1 Factory Calibrations
    2. 4.2 APLL Calibration
    3. 4.3 Runtime Calibrations
  8. 5List and Description of Calibrations
    1. 5.1 APLL Hardware Calibration
    2. 5.2 Synthesizer VCO Calibration
    3. 5.3 LO Distribution Calibration
    4. 5.4 Power Detector Calibration
    5. 5.5 TX Power Calibration
    6. 5.6 RX Gain Calibration
  9. 6Software configurability of Calibrations
    1. 6.1 Software Sequence for Factory Calibrations
      1. 6.1.1 mmWaveLink Initialization
      2. 6.1.2 FECSS Power-On
      3. 6.1.3 APLL Power-On and Hardware Calibration
      4. 6.1.4 RF Channel Configuration
      5. 6.1.5 Trigger Factory Calibrations
      6. 6.1.6 Factory Calibration Data Store
      7. 6.1.7 APLL Power-Off
      8. 6.1.8 FECSS Power-Off
      9. 6.1.9 mmWaveLink De-Initialization
    2. 6.2 Software Sequence for Runtime (In-Field) Operation
      1. 6.2.1 Initialization
        1. 6.2.1.1 mmWaveLink Initialization
        2. 6.2.1.2 FECSS Power-On
        3. 6.2.1.3 APLL Power-On and Hardware Calibration
        4. 6.2.1.4 Factory Calibration Data Restore
        5. 6.2.1.5 Temperature Sensor Configuration
      2. 6.2.2 Profile Configuration
        1. 6.2.2.1 Profile Common Configuration
        2. 6.2.2.2 Profile Time Configuration
        3. 6.2.2.3 Frame Configuration
      3. 6.2.3 Runtime Calibration
        1. 6.2.3.1 Temperature Sensor Trigger
        2. 6.2.3.2 Runtime Calibration Configure and Trigger
        3. 6.2.3.3 Tx CLPC Calibration
      4. 6.2.4 Frame Trigger
        1. 6.2.4.1 Sensor Start
        2. 6.2.4.2 Sensor Status
        3. 6.2.4.3 Sensor Stop
      5. 6.2.5 Deep Sleep Entry and Exit
      6. 6.2.6 De-Initialization
  10. 7 Recommended Calibration Sequence: OLPC vs CLPC
    1. 7.1 Safety Application With OLPC Tx Power Cal
    2. 7.2 Non-Safety Application With OLPC Tx Power Cal
    3. 7.3 Application With CLPC Tx Power Cal
  11. 8References

Runtime Calibrations

Runtime calibrations are performed to reduce the variations in performance of the front end caused by change in temperature. These calibrations need to be performed at every cold boot and depending on the change in temperature and respective temperature bin index. The user application can make a decision to enable the runtime calibrations. The decision criteria of which calibrations should be performed during the runtime based on the temperature change is detailed in Section 7. The Figure 6-2 in the Section 6.2 talks about various stages and steps for runtime calibrations to be performed by the user application.

Table 4-2 Temperature Bin Index
Temperature Bin Device Junction Temperature (JT)
Low -40°C ≤ T < 0°C
Mid 0°C ≤ T < 85°C
High 85°C ≤ T < 125°C