SWRU622A August   2024  – September 2024 AWRL1432 , AWRL6432 , IWRL1432 , IWRL6432 , IWRL6432AOP

 

  1.   1
  2.   Trademarks
  3. 1Introduction
  4. 2Basic Bootloader Flow
    1. 2.1 Programming Serial Data Flash Over UART (Bootloader Service)
    2. 2.2 Binary File Format
    3. 2.3 Flash Programming Sequence
    4. 2.4 Supported UART Commands/Response and Format
    5. 2.5 Flashing Sequence
    6. 2.6 ROM-Assisted Image Download Sequence
    7. 2.7 Booting Application Image
      1. 2.7.1 Booting From Serial Flash
      2. 2.7.2 Bootmode – SPI
      3. 2.7.3 Bootmode - UART
  5. 3Secondary Bootloader
    1. 3.1 SBL Execution Flow
      1. 3.1.1 Flash Memory Partitioning for SBL Execution
      2. 3.1.2 SBL Feature Modifications
      3. 3.1.3 SBL Development Considerations
  6. 4Warm Reset
    1. 4.1 Integrity Verification
    2. 4.2 LSTC/PBIST
    3. 4.3 Watchdog Timer
    4. 4.4 Reset-Triggered Flash Reload of Application
      1. 4.4.1 Hardware Solutions
        1. 4.4.1.1 PMIC I2C Messaging
        2. 4.4.1.2 External Watchdog Timer
        3. 4.4.1.3 External Voltage Monitoring or Voltage Supervisors
      2. 4.4.2 Software Solutions
        1. 4.4.2.1 Setting Boot Vector to 0x0
  7. 5Relevant Registers
    1. 5.1 Reset Registers
    2. 5.2 PC Registers
      1. 5.2.1 Addresses
  8. 6Revision History

Reset-Triggered Flash Reload of Application

Depending on an application use-case, a full reload of user application may be desired upon a warm reset of the device. This ensures a "clean" start for the application image and would recover the device from any memory corruption issues that may have caused runaway code and a watchdog warm reset in the first place.

The RBL, by design, does not support loading from flash on a warm reset. It is thus recommended that the customer take appropriate care in the design of their hardware PCB if this behavior is desired.