TIDUEB2A July   2022  – July 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1  Power Multiplexing Circuit Design Parameters
      2. 2.2.2  Input Connections and Filter
      3. 2.2.3  Reverse Polarity Protection
      4. 2.2.4  Battery Charger Input
      5. 2.2.5  Battery Ideal Diode-OR
      6. 2.2.6  Input and Battery Switchover Mechanics
      7. 2.2.7  LM74800 (U1) HGATE
      8. 2.2.8  Battery LM74800 HGATE
      9. 2.2.9  BQ25731 Design Considerations
      10. 2.2.10 BQ25731 Component Selection
      11. 2.2.11 ILIM Circuit
      12. 2.2.12 MCU and I2C Bus Design Considerations
      13. 2.2.13 MSP430FR2475
      14. 2.2.14 I2C Bus Overview
      15. 2.2.15 MSP430 Connectors
      16. 2.2.16 MSP430 Power Supply
      17. 2.2.17 Sensing Circuits
      18. 2.2.18 Current Sensing
      19. 2.2.19 Voltage Sensing
      20. 2.2.20 Input Comparators
      21. 2.2.21 Software Flow Chart
    3. 2.3 Highlighted Products
      1. 2.3.1 BQ25731
      2. 2.3.2 LM7480-Q1
      3. 2.3.3 LM74700-Q1
      4. 2.3.4 MSP430FR2475
      5. 2.3.5 PCA9546A
  8. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Adaptive Charge Current Limiting
      2. 3.3.2 Battery ORing System
      3. 3.3.3 Circuit Switchover From Adapter to Battery
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Documentation Support
    3. 4.3 Support Resources
    4. 4.4 Trademarks
  10. 5Revision History

MSP430FR2475

The MSP430FR247x microcontrollers (MCUs) are part of the MSP430™ MCU value line portfolio of ultra-low-power low-cost devices for sensing and measurement applications. MSP430FR247x MCUs integrate a 12-bit SAR ADC and one comparator. The MSP430FR247x MCUs support an extended temperature range from –40°C up to 105°C, so higher temperature industrial applications can benefit from the FRAM data-logging capabilities of the devices. The TI MSP430 family of low-power microcontrollers consists of devices with different sets of peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is optimized to achieve extended battery life in portable measurement applications. The MCU features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the MCU to wake up from low-power modes to active mode in less than 10 µs (typical).