SSZT308 may 2020 ISO1042-Q1 , SN6505B-Q1
Anant Kamath
This article appeared in Electronic Designand has been published here with permission
Designing for today’s automobiles is a balancing act.
Between meeting increasingly strict emissions standards and powering the growing number of on-board systems and gadgets, today’s vehicles need to be as efficient as they are high powered. To achieve this convergence of efficiency and power, engineers are relying more and more on systems that combine 48-V electric power operation with conventional gas engines. This approach ensures that vehicles meet strict carbon-di-oxide (CO2) emissions while also improving performance and drive quality.
While much has been said about dual-battery automotive systems themselves, I would like to focus on a critical and sometimes overlooked component in these combined 12- and 48-V systems: galvanic isolation. Galvanic Isolation is used for immunity against ground noise and to protect 12-V systems in case of ground lifts or fault conditions in the 48-V systems to which they connect.
In this article, I will discuss the need for isolation in 48-V automotive applications, and describe a compact, efficient, robust and low-noise method for isolating 48-V systems through the Control Area Network (CAN) interface.
Even in vehicles using the 48-V battery (usually lithium-ion), a conventional 12-V lead-acid battery still powers control electronics and lower-power devices. Systems running on these two supplies need to communicate with one another. For example, a 48-V starter generator is controlled by the engine controller operating off the 12-V battery. The grounds of both systems connect to the car chassis. While theoretically, the two systems can directly connect to each other, as shown in Figure 1a, galvanic isolation, as shown in Figure 1b, is almost always necessary because of these reasons:
Keeping in mind the above scenarios, the Verband der Automobilindustrie 320 (VDA320) standard for electric and electronic components in motor vehicles specifies a degree of isolation between the 48-V and 12-V domains. A dielectric withstand test is performed, where a 60-V test voltage is applied across the 48-V to the 12-V barrier for 60 mins, where the system must offer a 1 M-Ω impedance, and not be damaged by the test. A fault current test is also performed, where a 70-V is applied across the barrier, and the resultant current flowing must be less than 1 µA. The use of galvanic isolation, as shown in Figure 1, enables compliance to these requirements.
It is possible to achieve galvanic isolation in multiple ways, with the isolation boundary drawn at different locations inside the system. Figure 2 shows a popular approach that achieves isolation at the CAN interface. Isolating at the CAN interface vs. elsewhere in the system has the benefit of using the least number of isolation channels – only two channels of isolation are sufficient. This reduces cost and board space.
An isolated DC/DC converter derives an isolated power supply, VISO, that powers parts of the 48-V system. VISO ensures that the digital isolator and critical parts of the 48-V system have power available for operation, even if the 48-V battery is fully discharged. VISO can also be used to put the 48-V side into a safe state in case of disconnection of GND_48V.
New integrated isolated CAN transceivers and isolated DC-DC power supply controllers are now available that help simplify the isolated CAN interface in 48-V systems. Figure 3 shows an example 48-V starter generator. You can use similar isolation architectures for other 48-V systems, such as DC/DC converters, battery-management systems, heaters and air compressors.
Single-chip integrated isolated CAN transceivers such as the ISO1042-Q1, shown in Figure 2, integrate high-voltage galvanic isolation with a high-performance CAN transceiver to help reduce board area while improving timing parameters. From the CAN point of view, low loop delays and skews enable high-speed data communication using CAN Flexible Data-Rate. Isolation provides immunity against conducted and radiated disturbances. Redundant or reinforced isolation can provide extra margin for protection under fault conditions.
When used with an external transformer, a push-pull transformer driver such as the SN6505B-Q1, also shown in Figure 2, can generate an isolated power supply, VISO_HV, (in the range of 10 V to 15 V) to power metal-oxide semiconductor field-effect transistor gate drivers, and a lower VISO (in the range of 3.3 V to 5 V) to power the microcontroller and digital side of the isolated CAN device. The push-pull topology uses two low-side switches that are on in alternate clock phases to transfer power continuously across a center-tapped isolation transformer. The topology uses feed-forward regulation, with the output voltage controlled purely through transformer ratios. Continuous power transfer results in much lower peak currents compared to other topologies, resulting in lower emissions and higher efficiency. The symmetric drive also prevents transformer saturation, resulting in compact transformers.
On the 12-V side, a non-isolated DC/DC converter or buck can generate a 5-V supply to supply the CAN transceiver, while also serving as the input voltage for the push-pull isolated DC/DC converter. Using a buck upfront makes the system insensitive to variations in the 12-V battery power supply that can be caused by load changes. Also, operating with a lower input voltage (5 V vs. 12 V) results in smaller transformers.
Galvanic isolation is a very important consideration in automobiles using 48-V battery power. Isolation is used for immunity against ground noise, and to protect 12-V systems in case of ground lifts or fault conditions in the 48-V systems to which they connect. Examples of systems that use 48-V power in hybrid electric vehicles (HEV) include starter-generator, electric turbo chargers, electric pumps, air conditioners, heaters, electric suspension and driver assistance. Integrated isolated CAN transceivers, combined with push-pull-based isolated DC/DC power supplies, provide a compact, efficient, robust and low-noise technique for isolating 48-V systems.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated