• Menu
  • Product
  • Email
  • PDF
  • Order now
  • Push Your Receiver Bandwidths past 1-GHz in High-end Applications

    • SSZTB97 may   2016 ADC32RF45 , LMX2582

       

  • CONTENTS
  • SEARCH
  • Push Your Receiver Bandwidths past 1-GHz in High-end Applications
  1.   1
  2.   2
    1.     3
    2.     Additional Resources
  3. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content
Technical Article

Push Your Receiver Bandwidths past 1-GHz in High-end Applications

RJ Hopper

** This is the 11th post in an Analog Wire RF-sampling blog series. **

I discussed the benefits of the radio frequency (RF) sampling architecture for wide-bandwidth systems in a previous post, however, the analog-to-digital converter (ADC) is often the limiting component for supporting large signal bandwidths in receiver systems. In this post, I will discuss how to push your wideband telecommunication systems past 1GHz.

Why do you need receivers capable of such wide bandwidths? For telecommunication service providers, wider bandwidths increase their system capacity and data throughput.They require improvements over existing systems, because the  number of cellular users is expected to exceed 5 billion by 2019. At the same time, users demand more data services to connect with social media, transfer work files, and stream video.

To meet customer demand, providers utilize carrier aggregation systems to spread signals across multiple bands in order to access additional bandwidth. 5G cellular systems will use wide-bandwidth signals in the microwave frequency bands, where a lot of unused spectrum is available.

Digital pre-distortion (DPD) feedback receivers also need large signal bandwidths. DPD generally requires an increase in the transmitted signal bandwidth to compensate for the third- and fifth-order intermodulation products generated in the power amplifier (PA). As transmittersignal bandwidth increases, the DPD signal bandwidth expands fivefold. An RF sampling ADC is the key component in all of these systems.

Yet bandwidth alone is not sufficient. High-end telecommunication systems require a high dynamic range. The receiver must handle both high- and low-signal levels.

Figure 1 illustrates a potential receiver spectrum with the desired frequency channel, along with a narrowband interferer and the transmitter bleedthrough signal. The interferer falls within the channel filter bandwidth; the ADC must handle that high signal without saturating. The duplexer filter and channel filter highly attenuate the transmitter signal – but since it starts out at a very high power level, it is still significant by the time it reaches the ADC input. If those interferers fall at the proper frequency, the intermodulation product lands right on the desired signal.

Additionally, the interferer’s high-order harmonics may fold back onto the desired channel. A high-linearity ADC with excellent spurious free dynamic range (SFDR) minimizes the degradation impact in these blocking scenarios.

GUID-DC445D17-1763-49CB-B32A-A6011B329AC8-low.png Figure 1 Receiver Interference Spectrum

On the other end of the scale, you want a low noise floor to discern small signals from the noise. The noise figure of the system determines the receiver sensitivity. The sensitivity level is the lowest signal from which  the receiver can extract the desired information. The ADC’s signal-to-noise ratio (SNR) indicates the noise level in relation to a high input signal (usually near full-scale input). The absolute noise power density with a low-level signal indicates the device’s minimum noise-floor limit.

The thermal noise performance of the device is fixed. There is also noise contribution from the clock jitter. The total jitter is the root mean square (RMS) of the external clock jitter and the aperture jitter as seen in equation 1.  The aperture jitter is fixed and is inherent to the device; the value is extracted from the device’s datasheet.  The clock jitter depends on the designer’s external clock choice.  Implementing a low jitter clock solution is critical for good SNR performance. Equation 2 expresses how jitter impacts SNR:

GUID-723D7ECA-5E85-48F8-8343-DE1E195690BE-low.png

Notice that the sampling frequency is not part of the equation, however, the input frequency is included. RF sampling converters are not inherently more sensitive to clock jitter, but because they operate at higher frequencies, clock jitter becomes a key factor in SNR performance.

There is a need to support the dynamic range of high-end receiver systems and very wide signal bandwidths. The TI Designs 1-GHz Signal Bandwidth RF Sampling Receiver Reference Design (TIDA-01161) showcases a solution for a 1GHz bandwidth signal suitable for stringent telecommunication standards. The ADC32RF45 is a 14-bit, dual-channel, 3GSPS ADC. It has a 3dB input bandwidth of 3GHz and samples input signals up to 4GHz. The device supports signal bandwidths of over 1GHz (up to 1.5GHz maximum).

Figure 2 shows a captured 1GHz-wide signal. The signal includes a total of 40 20MHz-wide cellular long term evolution (LTE) carriers (4G) centered at 2.2GHz. Four groups are separated by about 65MHz, with 10 carriers per group. The entire signal-bandwidth power is about -30dBFS. Notice that the spectrum is quite clean and that the noise floor is about -100dBFS, which is limited by the input signal’s noise.

GUID-CA99E9D2-1B8A-44BE-BE7A-18F20A98E535-low.png Figure 2 1GHz-wide Signal Bandwidth Captured by the ADC32RF45 ADC

This reference design uses both the ADC32RF45 and the LMX2582 RF synthesizer for the ADC clock. The LMX2582 achieves a phase noise of -140dBc/Hz at 3GHz. This performance rivals test equipment and is suitable as a clock source for high-end RF sampling converters. This system is usable for wireless infrastructure base station receivers, large radar antenna arrays, high-end test equipment and DPD feedback receivers.

Next generation receivers need high dynamic range and large bandwidth capabilities to meet the growing capacity demands and the increase in data services.  The RF sampling architecture meets those requirements, while effectively integrating the functions of several other blocks which compacts the design.  This translates to lower cost and easier to design systems.

Check back next month when I discuss the RF sampling advantages when using integrated digital down converters.

Additional Resources

  • Visit the High Speed Signal Chain University to watch the RF sampling video series.
  • Search for solutions, ask questions and solve problems in the TI E2E™ Community High Speed Data Converter forum.
  • Visit TI’s RF sampling page for a full suite of support resources, including TI Designs reference designs and application notes.
  • See other posts in Russell’s RF sampling blog series.
  • Learn about TI’s data converter portfolio and find technical resources.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale