Sandeep Bahl
I often wonder why our industry doesn’t collaborate more to speed up the adoption of gallium nitride (GaN) transistors; after all, a rising tide lifts all boats. Each year, we’ve watched market forecasts getting pushed back. By working together, we can significantly increase the market penetration of this energy-efficient technology.
If GaN wins, we all win. Increasing worldwide energy efficiency by just 1% could shutter about 55 coal power plants. We are already seeing the adoption of GaN in our everyday lives- something I did not fully grasp until a few months ago, when my daughter asked me what GaN looks like. I realized we have a few hundred pieces of GaN at home in our holiday lights: GaN LED’s.
A good collaboration topic is GaN reliability. Even though GaN transistors now pass traditional silicon qualification stress testing, or “qual,” adoption is still slow. That is because “qual” does not assure confidence of low customer returns, because it is silicon-based. While passing “qual” is a worthy manufacturing, quality and reliability milestone, it is not clear what it means for GaN transistors in terms of device lifetime, failure rates and application relevance. Developers have options, and even though silicon solutions are more bulky and wasteful of energy, they are nonetheless tried and tested.
For developers to adopt GaN, they need to be confident that the part will work robustly in the application for its intended lifetime. At TI, we have been thinking deeply about what this means, and it boils down to the two items represented in Figure 1. First, the traditional silicon methodology needs to be extended for GaN and its failure modes. Second, stress testing needs to include the switching conditions of power management, which traditional silicon qual doesn’t address.
Standards are regarded as credible when an industry works together to develop them. Predictive reliability standards require a deep understanding of the technology; its failure modes; and knowledge of testing, qualification and product operation. The benefit of predictive standards is a significant acceleration in market adoption, and the first step is an awareness of existing deficiencies.
I have taken the first step by describing the issues in a white paper, “A comprehensive methodology to qualify the reliability of GaN products.” This paper generated discussions in the industry that drove us to continue the conversation by presenting an industry session paper at the Applied Power Electronics Conference (APEC) in March and by accepting an invitation from the IEEE International Reliability Physics Symposium (IRPS) technical committee to present in April. We expect the conversation to expand further into working groups and industrial collaboration as others also address this important topic.
TI is working toward a more energy-efficient future through reliable and dependable GaN products, bringing years of silicon manufacturing expertise and advanced device development talent to GaN. TI has leveraged our existing manufacturing infrastructure and capabilities to qualify our 600V GaN process. Our devices are tested using GaN-specific test methods that go beyond traditional silicon qualification practices to ensure reliability and robustness.
With qualified devices, power designers can realize the full power of GaN, break down barriers for market adoption, and above all else, realize the potential to live in a more energy-efficient world.
Learn more about GaN reliability with other posts by Sandeep:
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated