• Menu
  • Product
  • Email
  • PDF
  • Order now
  • LMT85-Q1 1.8V、SC70、アナログ温度センサ

    • JAJSE56 October   2017 LMT85-Q1

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • LMT85-Q1 1.8V、SC70、アナログ温度センサ
  1. 1 特長
  2. 2 アプリケーション
  3. 3 概要
  4. 4 改訂履歴
  5. 5 Device Comparison Tables
  6. 6 Pin Configuration and Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Accuracy Characteristics
    6. 7.6 Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 LMT85-Q1 Transfer Function
    4. 8.4 Device Functional Modes
      1. 8.4.1 Mounting and Thermal Conductivity
      2. 8.4.2 Output and Noise Considerations
      3. 8.4.3 Capacitive Loads
      4. 8.4.4 Output Voltage Shift
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Connection to an ADC
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Conserving Power Dissipation With Shutdown
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 ドキュメントの更新通知を受け取る方法
    2. 12.2 コミュニティ・リソース
    3. 12.3 商標
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 Glossary
  13. 13メカニカル、パッケージ、および注文情報
  14. 重要なお知らせ
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

LMT85-Q1 1.8V、SC70、アナログ温度センサ

このリソースの元の言語は英語です。 翻訳は概要を便宜的に提供するもので、自動化ツール (機械翻訳) を使用していることがあり、TI では翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

1 特長

  • LMT85-Q1は車載用アプリケーション向けにAEC-Q100認定済み:
    • デバイス温度グレード0: -40℃~+150℃
    • デバイスHBM ESD分類レベル2
    • デバイスCDM ESD分類レベルC6
  • 非常に正確: ±0.4℃ (標準値)
  • 低電圧1.8Vでの動作
  • 平均センサ・ゲイン: -8.2mV/℃
  • 低い静止電流: 5.4µA
  • 広い温度範囲: -50℃~150℃
  • 出力の短絡保護
  • 駆動能力±50µAのプッシュプル出力
  • 業界標準のLM20/19およびLM35温度センサとフットプリント互換
  • コスト効率に優れたサーミスタの代替

2 アプリケーション

  • インフォテインメントおよびクラスタ
  • パワートレイン・システム
  • 煙および熱感知器
  • ドローン
  • 家電製品

3 概要

LMT85-Q1は高精度のCMOS温度センサで、標準精度は±0.4℃ (最大値±2.7℃)で、リニアなアナログ出力電圧を持ち、この電圧は温度に反比例します。1.8Vの電源電圧で動作し、静止電流が5.4μA、パワーオン時間が0.7msで、効果的なパワーサイクリング・アーキテクチャを実現し、ドローンやセンサ・ノードなどバッテリ駆動のアプリケーションで消費電力を最小化できます。LMT85-Q1デバイスはAEC-Q100グレード0認定済みで、較正なしで動作温度範囲の全体にわたり、最大±2.7℃の精度を維持します。このため、LMT85-Q1はインフォテイメント、クラスタ、パワートレイン・システムなどの車載用アプリケーションに適しています。 広い動作範囲にわたる精度や、その他の特長から、LMT85-Q1はサーミスタの優れた代替となります。

異なる平均センサ・ゲインおよび類似の精度を持つデバイスについては、「類似の代替デバイス」で、LMT8xファミリの他のデバイスを参照してください。

製品情報(1)

型番 パッケージ 本体サイズ(公称)
LMT85-Q1 SOT (5) 2.00mm×1.25mm
(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

熱時定数

LMT85-Q1 D003_SNIS167.gif
* 高速な熱応答NTC

出力電圧と温度との関係

LMT85-Q1 celsius_temp_NEW_SNIS168.gif

4 改訂履歴

日付 改訂内容 注
2017年10月 * 初版。車載用デバイスをSNIS200から、単独のデータシートへ移動.

5 Device Comparison Tables

Table 1. Available Device Packages

ORDER NUMBER(1) PACKAGE PIN BODY SIZE (NOM) MOUNTING TYPE
LMT85DCK SOT (AKA(2): SC70, DCK) 5 2.00 mm × 1.25 mm Surface Mount
LMT85LP TO-92 (AKA(2): LP) 3 4.30 mm × 3.50 mm Through-hole; straight leads
LMT85LPG TO-92S (AKA(2): LPG) 3 4.00 mm × 3.15 mm Through-hole; straight leads
LMT85LPM TO-92 (AKA(2): LPM) 3 4.30 mm × 3.50 mm Through-hole; formed leads
LMT85DCK-Q1 SOT (AKA(2): SC70, DCK) 5 2.00 mm × 1.25 mm Surface Mount
(1) For all available packages and complete order numbers, see the Package Option addendum at the end of the data sheet.
(2) AKA = Also Known As

Table 2. Comparable Alternative Devices

DEVICE NAME AVERAGE OUTPUT SENSOR GAIN POWER SUPPLY RANGE
LMT84-Q1 –5.5 mV/°C 1.5 V to 5.5 V
LMT85-Q1 –8.2 mV/°C 1.8 V to 5.5 V
LMT86-Q1 –10.9 mV/°C 2.2 V to 5.5 V
LMT87-Q1 –13.6 mV/°C 2.7 V to 5.5 V

6 Pin Configuration and Functions

DCK Package
5-Pin SOT/SC70
(Top View)
LMT85-Q1 top_view_see_NS_package_number_MAA05A_nis168.gif

Pin Functions

PIN TYPE DESCRIPTION
NAME SOT (SC70) EQUIVALENT CIRCUIT FUNCTION
GND 2(1) , 5 Ground N/A Power Supply Ground
OUT 3 Analog
Output
LMT85-Q1 pin_descrip_table_row_two_nis167.gif Outputs a voltage that is inversely proportional to temperature
VDD 1, 4 Power N/A Positive Supply Voltage
(1) Direct connection to the back side of the die

7 Specifications

7.1 Absolute Maximum Ratings

See (1)(3)
MIN MAX UNIT
Supply voltage −0.3 6 V
Voltage at output pin −0.3 (VDD + 0.5) V
Output current –7 7 mA
Input current at any pin (2) –5 5 mA
Maximum junction temperature (TJMAX) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
(2) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > V), the current at that pin should be limited to 5 mA.
(3) Soldering process must comply with Reflow Temperature Profile specifications. Refer towww.ti.com/packaging .

7.2 ESD Ratings

VALUE UNIT
LMT85DCK-Q1 in SC70 package
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2500 V
Charged-device model (CDM), per AEC Q100-011 ±1000
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Specified temperature TMIN ≤ TA ≤ TMAX  °C
−50 ≤ TA ≤ 150 °C
Supply voltage (VDD) 1.8 5.5 V

7.4 Thermal Information(1)

THERMAL METRIC(2) LMT85-Q1 UNIT
DCK (SOT/SC70)
5 PINS
RθJA Junction-to-ambient thermal resistance (3)(4) 275 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 84 °C/W
RθJB Junction-to-board thermal resistance 56 °C/W
ψJT Junction-to-top characterization parameter 1.2 °C/W
ψJB Junction-to-board characterization parameter 55 °C/W
(1) For information on self-heating and thermal response time, see section Mounting and Thermal Conductivity.
(2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.
(3) The junction to ambient thermal resistance (RθJA) under natural convection is obtained in a simulation on a JEDEC-standard, High-K board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are included in the PCB, per JESD 51-5.
(4) Changes in output due to self-heating can be computed by multiplying the internal dissipation by the thermal resistance.

7.5 Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 3.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
Temperature accuracy (3) TA = TJ= 20°C to 150°C; VDD = 1.8 V to 5.5 V –2.7 ±0.4 2.7 °C
TA = TJ= 0°C to 150°C; VDD = 1.9 V to 5.5 V –2.7 ±0.7 2.7 °C
TA = TJ= 0°C to 150°C; VDD = 2.6 V to 5.5 V ±0.3 °C
TA = TJ= –50°C to 0°C; VDD = 2.3 V to 5.5 V –2.7 ±0.7 2.7 °C
TA = TJ= –50°C to 0°C; VDD = 2.9 V to 5.5 V ±0.25 °C
(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.
(3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

7.6 Electrical Characteristics

Unless otherwise noted, these specifications apply for VDD = +1.8V to +5.5V. MIN and MAX limits apply for TA = TJ = TMIN to TMAX, unless otherwise noted; typical values apply for TA = TJ = 25°C.
PARAMETER TEST CONDITIONS MIN (1) TYP (2) MAX (1) UNIT
Average sensor gain (output transfer function slope) –30°C and 90°C used to calculate average sensor gain –8.2 mV/°C
Load regulation (3) Source ≤ 50 μA, (VDD - VOUT) ≥ 200 mV –1 –0.22 mV
Sink ≤ 50 μA, VOUT ≥ 200 mV 0.26 1 mV
Line regulation (4) 200 μV/V
IS Supply current TA = TJ = 30°C to 150°C, (VDD - VOUT) ≥ 100 mV 5.4 8.1 μA
TA = TJ = -50°C to 150°C, (VDD - VOUT) ≥ 100 mV 5.4 9 μA
CL Output load capacitance 1100 pF
Power-on time (5) CL= 0 pF to 1100 pF 0.7 1.9 ms
Output drive TA = TJ = 25°C –50 +50 µA
(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.
(3) Source currents are flowing out of the LMT85-Q1. Sink currents are flowing into the LMT85-Q1.
(4) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift.
(5) Specified by design and characterization.

7.7 Typical Characteristics

LMT85-Q1 temp_error_vs_temp_nis168.gif Figure 1. Temperature Error vs Temperature
LMT85-Q1 supply_current_vs_temp_nis168.gif Figure 3. Supply Current vs Temperature
LMT85-Q1 load_reg_sourcing_current_nis168.gif Figure 5. Load Regulation, Sourcing Current
LMT85-Q1 change_in_vout_vs_overhead_voltage_nis168.gif Figure 7. Change in Vout vs Overhead Voltage
LMT85-Q1 output_voltage_vs_supply_voltage_nis168.gif Figure 9. Output Voltage vs Supply Voltage
LMT85-Q1 C002_SNIS168.png Figure 2. Minimum Operating Temperature vs
Supply Voltage
LMT85-Q1 supply_current_vs_supply_voltage_nis168.gif Figure 4. Supply Current vs Supply Voltage
LMT85-Q1 load_reg_sinking_current_nis168.gif Figure 6. Load Regulation, Sinking Current
LMT85-Q1 supply_noise_gain_vs_freq_nis168.gif Figure 8. Supply-Noise Gain vs Frequency

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale