DLPS075G April   2016  – May 2019 DLP5531-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      DLP5531-Q1 DLP Chipset System Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions – Connector Pins
    2.     Pin Functions – Test Pads
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Micromirror Array Optical Characteristics
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Sub-LVDS Data Interface
      2. 7.3.2 Low Speed Interface for Control
      3. 7.3.3 DMD Voltage Supplies
      4. 7.3.4 Asynchronous Reset
      5. 7.3.5 Temperature Sensing Diode
        1. 7.3.5.1 Temperature Sense Diode Theory
    4. 7.4 System Optical Considerations
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill
    5. 7.5 DMD Image Performance Specification
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Temperature Rise Through the Package for Heatsink Design
      2. 7.6.2 Monitoring Array Temperature Using the Temperature Sense Diode
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application Overview
      2. 8.2.2 Reference Design
      3. 8.2.3 Application Mission Profile Consideration
  9. Power Supply Recommendations
    1. 9.1 Power Supply Power-Up Procedure
    2. 9.2 Power Supply Power-Down Procedure
    3. 9.3 Power Supply Sequencing Requirements
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
    2. 11.2 Related Links
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 DMD Handling
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Monitoring Array Temperature Using the Temperature Sense Diode

The active array temperature can be computed analytically from the temperature sense diode measurement, the thermal resistance from array to diode, the electrical power, and the illumination heat load. The relationship between array temperature and the temperature sense diode is provided by the following equations:

Equation 6. TARRAY = TDIODE + QARRAY × RARRAY–TO–DIODE
Equation 7. QILLUMINATION = (QINCIDENT × DMD Absorption Constant)
Equation 8. QARRAY = QELECTRICAL + QILLUMINATION

where

  • TARRAY = computed array temperature (°C)
  • TDIODE = measured temperature sense diode temperature (°C)
  • RARRAY–TO–DIODE = package thermal resistance from array to diode (°C/W)
  • QARRAY = total power, electrical plus absorbed, on the DMD array (W)
    Refer to Temperature Rise Through the Package for Heatsink Design for details
  • QELECTRICAL = nominal electrical power dissipation by the DMD (W)
  • QILLUMINATION = absorbed illumination heat load (W)
  • QINCIDENT = incident power on the DMD (W)

The temperature sense diode to array thermal resistance (RARRAY–TO–DIODE) assumes a non-uniform illumination distribution on the DMD as shown in Figure 20. For illumination profiles more uniform than the one highlighted in Figure 20, the value provided here is valid.  However, for more non-uniform profiles (e.g. Gaussian distribution), the thermal resistance will be higher. Please contact TI to determine an accurate value for this case.

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

  1. DMD Absorption Constant = 0.895 – 0.004783 × 90 = 0.46
  2. QELECTRICAL = 0.4 W
  3. RARRAY–TO–DIODE = 0.8°C/W
  4. QINCIDENT = 10 W
  5. TDIODE = 50°C
  6. QARRAY = 0.4 W + (0.46 × 10 W) = 5 W
  7. TARRAY = 50°C + (5 W × 0.8°C/W) = 54.0°C