DLPS230C December   2022  – August 2024 DLP4620S-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
      1. 5.4.1 Illumination Overfill Diagram
    5. 5.5  Thermal Information
    6. 5.6  Electrical Characteristics
    7. 5.7  Timing Requirements
      1.      Electrical and Timing Diagrams
    8. 5.8  Switching Characteristics
      1. 5.8.1 LPSDR and Test Load Circuit Diagrams
    9. 5.9  System Mounting Interface Loads
      1.      System Interface Loads Diagram
    10. 5.10 Micromirror Array Physical Characteristics
      1. 5.10.1 Micromirror Array Physical Characteristics Diagram
    11. 5.11 Micromirror Array Optical Characteristics
    12. 5.12 Window Characteristics
    13. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 SubLVDS Data Interface
      2. 6.3.2 Low Speed Interface for Control
      3. 6.3.3 DMD Voltage Supplies
      4. 6.3.4 Asynchronous Reset
      5. 6.3.5 Temperature Sensing Diode
        1. 6.3.5.1 Temperature Sense Diode Theory
    4. 6.4 System Optical Considerations
      1. 6.4.1 Numerical Aperture and Stray Light Control
      2. 6.4.2 Pupil Match
      3. 6.4.3 Illumination Overfill
    5. 6.5 DMD Image Performance Specification
    6. 6.6 Micromirror Array Temperature Calculation
      1. 6.6.1 Monitoring Array Temperature Using the Temperature Sense Diode
    7. 6.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Application Overview
      2. 7.2.2 Input Image Resolution
      3. 7.2.3 Reference Design
      4. 7.2.4 Application Mission Profile Consideration
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Power Supply Power-Up Procedure
      2. 7.3.2 Power Supply Power-Down Procedure
      3. 7.3.3 Power Supply Sequencing Requirements
    4. 7.4 Layout Guidelines
    5. 7.5 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
      2. 8.1.2 Device Markings
    2. 8.2 Third-Party Products Disclaimer
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 DMD Handling
    8. 8.8 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Monitoring Array Temperature Using the Temperature Sense Diode

The active array temperature can be computed analytically from the temperature sense diode measurement, the thermal resistance from array to diode, the electrical power, and the illumination heat load. The relationship between array temperature and the temperature sense diode is provided by the following equations:

Equation 7. TARRAY = TDIODE + (QARRAY × RARRAY–TO–DIODE)
Equation 8. QILLUMINATION = (QINCIDENT × DMD Absorption Constant)
Equation 9. QARRAY = QELECTRICAL + QILLUMINATION

where

  • TARRAY = computed array temperature (°C)
  • TDIODE = measured temperature sense diode temperature (°C)
  • RARRAY–TO–DIODE = package thermal resistance from array to diode (°C/W)
  • QARRAY = total power, electrical plus absorbed, on the DMD array (W)
    Refer to Section 7.6 for details.
  • QELECTRICAL = nominal electrical power dissipation by the DMD (W)
  • QILLUMINATION = absorbed illumination heat load (W)
  • QINCIDENT = incident power on the DMD (W)

The temperature sense diode to array thermal resistance (RARRAY–TO–DIODE) assumes a uniform illumination distribution on the DMD.

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

  1. TDIODE = 55°C
  2. QINCIDENT = 10W (measured)
  3. DMD Absorption Constant = 0.895 – 0.004783 × 90 = 0.46
  4. QELECTRICAL = 0.4W
  5. RARRAY–TO–DIODE = 0.1°C/W
  6. QARRAY = 0.4W + (0.46 × 10W) = 5W
  7. TARRAY = 55°C + (5 W × 0.1°C/W) = 55.5°C