DLPU066A March   2018  – April 2022 DLP3030-Q1

 

  1. 1Calibration Purpose
    1. 1.1 Calibration Purpose
    2. 1.2 Goal of Calibration
  2. 2Calibration Software and Tools
    1. 2.1 Calibration Software and Tools
  3. 3Calibration Setup
    1. 3.1 Calibration Setup
  4. 4Calibration Overview and Theory
    1. 4.1 Goal of Calibration
    2. 4.2 Calibration Background
      1. 4.2.1 Calibration File Parameters
      2. 4.2.2 Coarse Adjustment Parameter Combinations
    3. 4.3 Calibration Process
      1. 4.3.1 Calibration Pre-work: Coarse Combination Determination
      2. 4.3.2 Temperature Charaterization
      3. 4.3.3 Production PGU Calibration
  5. 5Calibration Pre-work
    1. 5.1 Pre-work Overview
    2. 5.2 Coarse Combination Determination
    3. 5.3 Strategically Adjusting Coarse Combination Parameters
      1. 5.3.1 LDC Index
      2. 5.3.2 Optical Sensor Feedback Gain
      3. 5.3.3 Current Limit
    4. 5.4 Coarse Combination Strategies
  6. 6Calibration Procedure
    1. 6.1 Calibration Procedure Overview
    2. 6.2 Calibration Sweep Setup and Coarse Combinations
    3. 6.3 Temperature Characterization
    4. 6.4 Production PGU Calibration
    5. 6.5 Generating a Calibration File
  7. 7Revision History

Optical Sensor Feedback Gain

Optical Sensor Feedback Gain controls the scale of the photocurrent response from the photodiode into the Piccolo MCU. Adjusting this parameter helps maintain high resolution of photocurrent response across all brightness levels.

At high brightness levels (continuous mode and some discontinuous mode LDC indexes), the sensor gain should be kept low to allow photodiode response to support high brightness outputs. At low brightness levels (dim discontinuous mode LDC indexes), sensor gain should be increased to increase resolution of the photocurrent response. This allows the Piccolo MCU to more accurately control lower brightness outputs from the LEDs. Increasing the optical sensor feedback gain of a desired coarse combination will decrease achievable minimum brightness outputs.