SBAA497B May   2021  – April 2022 PCM3120-Q1 , PCM5120-Q1 , PCM6120-Q1 , TLV320ADC3120 , TLV320ADC5120 , TLV320ADC6120

 

  1.   Trademarks
  2. 1Introduction
  3. 2Infinite Impulse Response Filters
    1. 2.1 Digital Biquad Filter
  4. 3TLV320ADCx120 and PCMx120-Q1 Digital Biquad Filters
    1. 3.1 Filter Design Using PurePath Console
      1. 3.1.1 Example Generating Programmable Biquad Coefficients Using PurePath Console
    2. 3.2 How to Generate N0, N1, N2, D1, and D2 Coefficients with a Digital Filter Design Package
    3. 3.3 Avoid Overflow Conditions
    4. 3.4 Digital Biquad Filter Allocation to Output Channel
    5. 3.5 Programmable Coefficient Registers for Digital Biquad Filters 1–6
    6. 3.6 Programmable Coefficient Registers for Digital Biquad Filters 7–12
  5. 4How to Program the Digital Biquad Filters on the TLV320ADCx120 and PCMx120-Q1
  6. 5Typical Audio Applications for Biquad Filtering
    1. 5.1 Parametric Equalizers
  7. 6Crossover Networks
  8. 7Voice Boost
  9. 8Bass Boost
  10. 9Removing 50 Hz–60 Hz Hum With Notch Filters
  11.   A Digital Filter Design Techniques
    1.     A.A Analog Filters
  12.   B Related Documentation
  13.   B Revision History

Infinite Impulse Response Filters

Equation 1 specifies the transfer function of infinite impulse response filters (IIR).

Equation 1. GUID-EFD6E73C-04F5-45A7-AFC7-F4453C8FB18A-low.gif

When the coefficients of this transfer function are quantized for fixed point implementations, the resulting errors due to quantization and the recursive nature of the filter can significantly alter the desired filter characteristics and lead to instability. Partitioning this transfer function into a set of cascaded lower-order filters reduces the sensitivity to coefficient quantization. Cascaded Biquad IIR filter implementations have been proven to be effective in minimizing these effects.