SBAS430F January   2009  – April 2018 DAC7568 , DAC8168 , DAC8568

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Block Diagram
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Electrical Characteristics
    3. 7.3 Timing Requirements
    4. 7.4 Typical Characteristics: Internal Reference
    5. 7.5 Typical Characteristics: DAC at AVDD = 5.5 V
    6. 7.6 Typical Characteristics: DAC at AVDD = 3.6 V
    7. 7.7 Typical Characteristics: DAC at AVDD = 2.7 V
  8. Detailed Description
    1. 8.1 Functional Block Diagram
    2. 8.2 Feature Description
      1. 8.2.1  Digital-to-Analog Converter (DAC)
      2. 8.2.2  Resistor String
      3. 8.2.3  Output Amplifier
      4. 8.2.4  Internal Reference
      5. 8.2.5  Serial Interface
      6. 8.2.6  Input Shift Register
        1. Table 1. DAC8568 Data Input Register Format
        2. Table 2. DAC8168 Data Input Register Format
        3. Table 3. DAC7568 Data Input Register Format
      7. 8.2.7  SYNC Interrupt
      8. 8.2.8  Power-on Reset to Zero Scale or Midscale
      9. 8.2.9  Clear Code Register and CLR Pin
      10. 8.2.10 Software Reset Function
      11. 8.2.11 Operating Examples: DAC7568/DAC8168/DAC8568
        1. Table 4.   1st: Write to Data Buffer A:
        2. Table 5.   2nd: Write to Data Buffer B:
        3. Table 6.   3rd: Write to Data Buffer G:
        4. Table 7.   4th: Write to Data Buffer H and Simultaneously Update all DACs:
        5. Table 8.   1st: Write to Data Buffer C and Load DAC C: DAC C Output Settles to Specified Value Upon Completion:
        6. Table 9.   2nd: Write to Data Buffer D and Load DAC D: DAC D Output Settles to Specified Value Upon Completion:
        7. Table 10. 3rd: Write to Data Buffer E and Load DAC E: DAC E Output Settles to Specified Value Upon Completion:
        8. Table 11. 4th: Write to Data Buffer F and Load DAC F: DAC F Output Settles to Specified Value Upon Completion:
        9. Table 12. 1st: Write Power-Down Command to DAC Channel A and DAC Channel B: DAC A and DAC B to 1kΩ.
        10. Table 13. 2nd: Write Power-Down Command to DAC Channel H: DAC H to 1kΩ.
        11. Table 14. 3rd: Write Power-Down Command to DAC Channel C and DAC Channel D: DAC C and DAC D to 100kΩ.
        12. Table 15. 4th: Write Power-Down Command to DAC Channel F: DAC F to 100kΩ.
        13. Table 16. 1st: Write Sequence for Enabling the DAC7568, DAC8168, and DAC8568 Internal Reference All the Time:
        14. Table 17. 2nd: Write Sequence to Power-Down All DACs to High-Impedance:
        15. Table 18. 1st: Write Sequence for Disabling the DAC7568, DAC8168, and DAC8568 Internal Reference All the Time (after this sequence, these devices require an external reference source to function):
        16. Table 19. 2nd: Write Sequence to Write Specified Data to All DACs:
    3. 8.3 Device Functional Modes
      1. 8.3.1 Enable/Disable Internal Reference
        1. 8.3.1.1 Static Mode
          1. Table 20. Write Sequence for Enabling Internal Reference (Static Mode) (Internal Reference Powered On—08000001h)
          2. Table 21. Write Sequence for Disabling Internal Reference (Static Mode) (Internal Reference Powered On—08000000h)
        2. 8.3.1.2 Flexible Mode
          1. Table 22. Write Sequence for Enabling Internal Reference (Flexible Mode) (Internal Reference Powered On—09080000h)
          2. Table 23. Write Sequence for Enabling Internal Reference (Flexible Mode) (Internal Reference Always Powered On—090A0000h)
          3. Table 24. Write Sequence for Disabling Internal Reference (Flexible Mode) (Internal Reference Always Powered Down—090C0000h)
          4. Table 25. Write Sequence for Switching from Flexible Mode to Static Mode for Internal Reference (Internal Reference Always Powered Down—09000000h)
      2. 8.3.2 LDAC Functionality
      3. 8.3.3 Power-Down Modes
        1. 8.3.3.1 DAC Power-Down Commands
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications - Microprocessor Interfacing
      1. 9.2.1 DAC7568/DAC8168/DAC8568 to an 8051 Interface
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1 Internal Reference
            1. 9.2.1.1.1.1 Supply Voltage
            2. 9.2.1.1.1.2 Temperature Drift
            3. 9.2.1.1.1.3 Noise Performance
            4. 9.2.1.1.1.4 Load Regulation
            5. 9.2.1.1.1.5 Long-Term Stability
            6. 9.2.1.1.1.6 Thermal Hysteresis
          2. 9.2.1.1.2 DAC Noise Performance
          3. 9.2.1.1.3 Bipolar Operation Using The DAC7568/DAC8168/DAC8568
      2. 9.2.2 DAC7568/DAC8168/DAC8568 to Microwire Interface
      3. 9.2.3 DAC7568/DAC8168/DAC8568 to 68HC11 Interface
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1 Static Performance
          1. 11.1.1.1.1  Resolution
          2. 11.1.1.1.2  Least Significant Bit (LSB)
          3. 11.1.1.1.3  Most Significant Bit (MSB)
          4. 11.1.1.1.4  Relative Accuracy or Integral Nonlinearity (INL)
          5. 11.1.1.1.5  Differential Nonlinearity (DNL)
          6. 11.1.1.1.6  Full-Scale Error
          7. 11.1.1.1.7  Offset Error
          8. 11.1.1.1.8  Zero-Code Error
          9. 11.1.1.1.9  Gain Error
          10. 11.1.1.1.10 Full-Scale Error Drift
          11. 11.1.1.1.11 Offset Error Drift
          12. 11.1.1.1.12 Zero-Code Error Drift
          13. 11.1.1.1.13 Gain Temperature Coefficient
          14. 11.1.1.1.14 Power-Supply Rejection Ratio (PSRR)
          15. 11.1.1.1.15 Monotonicity
        2. 11.1.1.2 Dynamic Performance
          1. 11.1.1.2.1  Slew Rate
          2. 11.1.1.2.2  Output Voltage Settling Time
          3. 11.1.1.2.3  Code Change/Digital-to-Analog Glitch Energy
          4. 11.1.1.2.4  Digital Feedthrough
          5. 11.1.1.2.5  Channel-to-Channel DC Crosstalk
          6. 11.1.1.2.6  Channel-to-Channel AC Crosstalk
          7. 11.1.1.2.7  Signal-to-Noise Ratio (SNR)
          8. 11.1.1.2.8  Total Harmonic Distortion (THD)
          9. 11.1.1.2.9  Spurious-Free Dynamic Range (SFDR)
          10. 11.1.1.2.10 Signal-to-Noise plus Distortion (SINAD)
          11. 11.1.1.2.11 DAC Output Noise Density
          12. 11.1.1.2.12 DAC Output Noise
          13. 11.1.1.2.13 Full-Scale Range (FSR)
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Typical Characteristics: DAC at AVDD = 2.7 V

Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all DAC codes in straight binary data format, unless otherwise noted
DAC7568 DAC8168 DAC8568 tc_le_27v_40c_cha_bas430.gifFigure 76. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_40c_che_bas430.gifFigure 78. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_25c_cha_bas430.gifFigure 80. Linearity Error and Differential Linearity Error vs Digital Input Code (+25°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_25c_che_bas430.gifFigure 82. Linearity Error and Differential Linearity Error vs Digital Input Code (+25°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_125c_cha_bas430.gifFigure 84. Linearity Error and Differential Linearity Error vs Digital Input Code (+105°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_125c_che_bas430.gifFigure 86. Linearity Error and Differential Linearity Error vs Digital Input Code (+105°C)
DAC7568 DAC8168 DAC8568 tc_offset-tmp_27v_bas430.gifFigure 88. Offset Error vs Temperature
DAC7568 DAC8168 DAC8568 tc_fs_error-tmp_27v_bas430.gifFigure 90. Full-Scale Error vs Temperature
DAC7568 DAC8168 DAC8568 tc_gain-tmp_27v_bas430.gifFigure 92. Gain Error vs Temperature
DAC7568 DAC8168 DAC8568 tc_source_ch-a_bas430.gifFigure 94. Source Current at Positive Rail (Grades A and B)
DAC7568 DAC8168 DAC8568 tc_source_ch-b_bas430.gifFigure 96. Source Current at Positive Rail (Grades A and B)
DAC7568 DAC8168 DAC8568 tc_source_ch-g_bas430.gifFigure 98. Source Current at Positive Rail (Grades A and B
DAC7568 DAC8168 DAC8568 tc_idd-code_27v_bas430.gifFigure 100. Power-Supply Current Vs Digital Input Code
DAC7568 DAC8168 DAC8568 tc_idd-logic_dis_27v_bas430.gifFigure 102. Power-Supply Current vs Logic Input Voltage
DAC7568 DAC8168 DAC8568 tc_histo_dis_27v_bas430.gifFigure 104. Power-Supply Current Histogram
DAC7568 DAC8168 DAC8568 tc_fs_27v_ris_bas430.gifFigure 106. Full-Scale Settling Time: 2.7-V Rising Edge
DAC7568 DAC8168 DAC8568 tc_hs_27v_ris_bas430.gifFigure 108. Half-Scale Settling Time: 2.7-V Rising Edge
DAC7568 DAC8168 DAC8568 tc_feedthru_27v_bas430.gifFigure 110. Clock Feedthrough 2.7 V, 2 Mhz, Midscale
DAC7568 DAC8168 DAC8568 tc_pwr_on_mid_27v_bas430.gifFigure 112. Power-On Glitch Reset to Midscale
DAC7568 DAC8168 DAC8568 tc_glitch_ch-e_7-8_bas430.gifFigure 114. Glitch Energy: 2.7 V, 1-LSB Step, Rising Edge
DAC7568 DAC8168 DAC8568 tc_glitch_ch-a_7-8_bas430.gifFigure 116. Glitch Energy: 2.7 V, 4-LSB Step, Rising Edge
DAC7568 DAC8168 DAC8568 tc_glitch_ch-b_7-8_bas430.gifFigure 118. Glitch Energy: 2.7 V, 16-LSB Step, Rising Edge
DAC7568 DAC8168 DAC8568 tc_le_27v_40c_chd_bas430.gifFigure 77. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_40c_chh_bas430.gifFigure 79. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_25c_chd_bas430.gifFigure 81. Linearity Error and Differential Linearity Error vs Digital Input Code (+25°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_25c_chh_bas430.gifFigure 83. Linearity Error and Differential Linearity Error vs Digital Input Code (+25°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_125c_chd_bas430.gifFigure 85. Linearity Error and Differential Linearity Error vs Digital Input Code (+105°C)
DAC7568 DAC8168 DAC8568 tc_le_27v_125c_chh_bas430.gifFigure 87. Linearity Error and Differential Linearity Error vs Digital Input Code (+105°C)
DAC7568 DAC8168 DAC8568 tc_idd-tmp_dis_27v_bas430.gifFigure 89. Power-Supply Current vs Temperature
DAC7568 DAC8168 DAC8568 tc_idd-tmp_en_27v_bas430.gifFigure 91. Power-Supply Current vs Temperature
DAC7568 DAC8168 DAC8568 tc_ipd-tmp_27v_bas430.gifFigure 93. Power-Down Current vs Temperature
DAC7568 DAC8168 DAC8568 tc_sink_ch-a_bas430.gifFigure 95. Sink Current at Negative Rail (All Grades)
DAC7568 DAC8168 DAC8568 tc_sink_ch-b_bas430.gifFigure 97. Sink Current at Negative Rail (All Grades)
DAC7568 DAC8168 DAC8568 tc_sink_ch-g_bas430.gifFigure 99. Sink Current at Negative Rail (All Grades)
DAC7568 DAC8168 DAC8568 tc_idd-code_27v_ext_bas430.gifFigure 101. Power-Supply Current vs Digital Input Code
DAC7568 DAC8168 DAC8568 tc_idd-logic_en_27v_bas430.gifFigure 103. Power-Supply Current vs Logic Input Voltage
DAC7568 DAC8168 DAC8568 tc_histo_25vref_27v_bas430.gifFigure 105. Power-Supply Current Histogram
DAC7568 DAC8168 DAC8568 tc_fs_27v_fal_bas430.gifFigure 107. Full-Scale Settling Time: 2.7-V Falling Edge
DAC7568 DAC8168 DAC8568 tc_hs_27v_fal_bas430.gifFigure 109. Half-Scale Settling Time: 2.7-V Falling Edge
DAC7568 DAC8168 DAC8568 tc_pwr_on_zero_27v_bas430.gifFigure 111. Power-On Glitch Reset to Zero Scale
DAC7568 DAC8168 DAC8568 tc_pwr_off_27v_bas430.gifFigure 113. Power-Off Glitch
DAC7568 DAC8168 DAC8568 tc_glitch_ch-e_8-7_bas430.gifFigure 115. Glitch Energy: 2.7 V, 1-LSB Step, Falling Edge
DAC7568 DAC8168 DAC8568 tc_glitch_ch-a_8-7_bas430.gifFigure 117. Glitch Energy: 2.7 V, 4-LSB Step, Falling Edge
DAC7568 DAC8168 DAC8568 tc_glitch_ch-b_8-7_bas430.gifFigure 119. Glitch Energy: 2.7 V, 16-LSB Step, Falling Edge