SBAS740B October   2015  – May 2020 ADS1118-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      K-Type Thermocouple Measurement Using Integrated Temperature Sensor for Cold-Junction Compensation
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements: Serial Interface
    7. 7.7 Switching Characteristics: Serial Interface
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Noise Performance
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Multiplexer
      2. 9.3.2 Analog Inputs
      3. 9.3.3 Full-Scale Range (FSR) and LSB Size
      4. 9.3.4 Voltage Reference
      5. 9.3.5 Oscillator
      6. 9.3.6 Temperature Sensor
        1. 9.3.6.1 Converting from Temperature to Digital Codes
        2. 9.3.6.2 Converting from Digital Codes to Temperature
    4. 9.4 Device Functional Modes
      1. 9.4.1 Reset and Power-Up
      2. 9.4.2 Operating Modes
        1. 9.4.2.1 Single-Shot Mode and Power-Down
        2. 9.4.2.2 Continuous-Conversion Mode
      3. 9.4.3 Duty Cycling for Low Power
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
      2. 9.5.2 Chip Select (CS)
      3. 9.5.3 Serial Clock (SCLK)
      4. 9.5.4 Data Input (DIN)
      5. 9.5.5 Data Output and Data Ready (DOUT/DRDY)
      6. 9.5.6 Data Format
      7. 9.5.7 Data Retrieval
        1. 9.5.7.1 32-Bit Data Transmission Cycle
        2. 9.5.7.2 16-Bit Data Transmission Cycle
    6. 9.6 Register Maps
      1. 9.6.1 Conversion Register [reset = 0000h]
        1. Table 6. Conversion Register Field Descriptions
      2. 9.6.2 Config Register [reset = 058Bh]
        1. Table 7. Config Register Field Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Serial Interface Connections
      2. 10.1.2 GPIO Ports for Communication
      3. 10.1.3 Analog Input Filtering
      4. 10.1.4 Single-Ended Inputs
      5. 10.1.5 Connecting Multiple Devices
      6. 10.1.6 Pseudo Code Example
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Power-Supply Sequencing
    2. 11.2 Power-Supply Decoupling
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Noise Performance

Delta-sigma (ΔΣ) analog-to-digital converter (ADC) architecture is based on the principle of oversampling. The input signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency), and subsequently filtered and decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between modulator frequency and output data rate is called the oversampling ratio (OSR). Increasing the OSR, and thus reducing the output data rate, optimizes the noise performance of the ADC. That is, the input-referred noise reduces when the output data rate is reduced because more samples of the internal modulator are averaged to yield one conversion result. Increasing the gain also reduces the input-referred noise, and is particularly useful when measuring low-level signals.

Table 1 and Table 2 summarize the device noise performance. Data are representative of typical noise performance at TA = 25°C with the inputs shorted together externally. Table 1 show the input-referred noise in units of μVRMS for the conditions shown. Note that µVPP values are shown in parenthesis. Table 2 shows the corresponding data in effective number of bits (ENOB) calculated from μVRMS values using Equation 1. The noise-free bits calculated from peak-to-peak noise values using Equation 2 are shown in parenthesis.

Equation 1. ENOB = ln (FSR / VRMS-Noise) / ln(2)
Equation 2. Noise-Free Bits = ln (FSR / VPP-Noise) / ln(2)

Table 1. Noise in μVRMS (μVPP) at VDD = 3.3 V

DATA RATE
(SPS)
FULL-SCALE RANGE (FSR)
±6.144 V ±4.096 V ±2.048 V ±1.024 V ±0.512 V ±0.256 V
8 187.5 (187.5) 125.0 (125.0) 62.5 (62.5) 31.25 (31.25) 15.62 (15.62) 7.81 (7.81)
16 187.5 (187.5) 125.0 (125.0) 62.5 (62.5) 31.25 (31.25) 15.62 (15.62) 7.81 (7.81)
32 187.5 (187.5) 125.0 (125.0) 62.5 (62.5) 31.25 (31.25) 15.62 (15.62) 7.81 (7.81)
64 187.5 (187.5) 125.0 (125.0) 62.5 (62.5) 31.25 (31.25) 15.62 (15.62) 7.81 (7.81)
128 187.5 (187.5) 125.0 (125.0) 62.5 (62.5) 31.25 (31.25) 15.62 (15.62) 7.81 (12.35)
250 187.5 (252.09) 125.0 (148.28) 62.5 (84.03) 31.25 (39.54) 15.62 (16.06) 7.81 (18.53)
475 187.5 (266.92) 125.0 (227.38) 62.5 (79.08) 31.25 (56.84) 15.62 (32.13) 7.81 (25.95)
860 187.5 (430.06) 125.0 (266.93) 62.5 (118.63) 31.25 (64.26) 15.62 (40.78) 7.81 (35.83)

Table 2. ENOB from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise) at VDD = 3.3 V

DATA RATE
(SPS)
FULL-SCALE RANGE (FSR)
±6.144 V ±4.096 V ±2.048 V ±1.024 V ±0.512 V ±0.256 V
8 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
16 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
32 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
64 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
128 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.33)
250 16 (15.57) 16 (15.75) 16 (15.57) 16 (15.66) 16 (15.96) 16 (14.75)
475 16 (15.49) 16 (15.13) 16 (15.66) 16 (15.13) 16 (14.95) 16 (14.26)
860 16 (14.8) 16 (14.9) 16 (15.07) 16 (14.95) 16 (14.61) 16 (13.8)