SBAS815A February   2017  – June 2017 ADS114S06 , ADS114S08

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Functional Block Diagram
  4. Revision History
  5. Device Family Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Noise Performance
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Multiplexer
      2. 9.3.2  Low-Noise Programmable Gain Amplifier
        1. 9.3.2.1 PGA Input-Voltage Requirements
        2. 9.3.2.2 PGA Rail Flags
        3. 9.3.2.3 Bypassing the PGA
      3. 9.3.3  Voltage Reference
        1. 9.3.3.1 Internal Reference
        2. 9.3.3.2 External Reference
        3. 9.3.3.3 Reference Buffers
      4. 9.3.4  Clock Source
      5. 9.3.5  Delta-Sigma Modulator
      6. 9.3.6  Digital Filter
        1. 9.3.6.1 Low-Latency Filter
          1. 9.3.6.1.1 Low-Latency Filter Frequency Response
          2. 9.3.6.1.2 Data Conversion Time for the Low-Latency Filter
        2. 9.3.6.2 Sinc3 Filter
          1. 9.3.6.2.1 Sinc3 Filter Frequency Response
          2. 9.3.6.2.2 Data Conversion Time for the Sinc3 Filter
        3. 9.3.6.3 Note on Conversion Time
        4. 9.3.6.4 50-Hz and 60-Hz Line Cycle Rejection
        5. 9.3.6.5 Global Chop Mode
      7. 9.3.7  Excitation Current Sources (IDACs)
      8. 9.3.8  Bias Voltage Generation
      9. 9.3.9  System Monitor
        1. 9.3.9.1 Internal Temperature Sensor
        2. 9.3.9.2 Power Supply Monitors
        3. 9.3.9.3 Burn-Out Current Sources
      10. 9.3.10 Status Register
        1. 9.3.10.1 POR Flag
        2. 9.3.10.2 RDY Flag
        3. 9.3.10.3 PGA Output Voltage Rail Monitors
        4. 9.3.10.4 Reference Monitor
      11. 9.3.11 General-Purpose Inputs and Outputs (GPIOs)
      12. 9.3.12 Low-Side Power Switch
      13. 9.3.13 Cyclic Redundancy Check (CRC)
      14. 9.3.14 Calibration
        1. 9.3.14.1 Offset Calibration
        2. 9.3.14.2 Gain Calibration
    4. 9.4 Device Functional Modes
      1. 9.4.1 Reset
        1. 9.4.1.1 Power-On Reset
        2. 9.4.1.2 RESET Pin
        3. 9.4.1.3 Reset by Command
      2. 9.4.2 Power-Down Mode
      3. 9.4.3 Standby Mode
      4. 9.4.4 Conversion Modes
        1. 9.4.4.1 Continuous Conversion Mode
        2. 9.4.4.2 Single-Shot Conversion Mode
        3. 9.4.4.3 Programmable Conversion Delay
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Chip Select (CS)
        2. 9.5.1.2 Serial Clock (SCLK)
        3. 9.5.1.3 Serial Data Input (DIN)
        4. 9.5.1.4 Serial Data Output and Data Ready (DOUT/DRDY)
        5. 9.5.1.5 Data Ready (DRDY)
        6. 9.5.1.6 Timeout
      2. 9.5.2 Data Format
      3. 9.5.3 Commands
        1. 9.5.3.1  NOP
        2. 9.5.3.2  WAKEUP
        3. 9.5.3.3  POWERDOWN
        4. 9.5.3.4  RESET
        5. 9.5.3.5  START
        6. 9.5.3.6  STOP
        7. 9.5.3.7  SYOCAL
        8. 9.5.3.8  SYGCAL
        9. 9.5.3.9  SFOCAL
        10. 9.5.3.10 RDATA
        11. 9.5.3.11 RREG
        12. 9.5.3.12 WREG
      4. 9.5.4 Reading Data
        1. 9.5.4.1 Read Data Direct
        2. 9.5.4.2 Read Data by RDATA Command
        3. 9.5.4.3 Sending Commands When Reading Data
      5. 9.5.5 Interfacing with Multiple Devices
    6. 9.6 Register Map
      1. 9.6.1 Configuration Registers
        1. 9.6.1.1  Device ID Register (address = 00h) [reset = xxh]
          1. Table 26. Device ID (ID) Register Field Descriptions
        2. 9.6.1.2  Device Status Register (address = 01h) [reset = 80h]
          1. Table 27. Device Status (STATUS) Register Field Descriptions
        3. 9.6.1.3  Input Multiplexer Register (address = 02h) [reset = 01h]
          1. Table 28. Input Multiplexer (INPMUX) Register Field Descriptions
        4. 9.6.1.4  Gain Setting Register (address = 03h) [reset = 00h]
          1. Table 29. Gain Setting (PGA) Register Field Descriptions
        5. 9.6.1.5  Data Rate Register (address = 04h) [reset = 14h]
          1. Table 30. Data Rate (DATARATE) Register Field Descriptions
        6. 9.6.1.6  Reference Control Register (address = 05h) [reset = 10h]
          1. Table 31. Reference Control (REF) Register Field Descriptions
        7. 9.6.1.7  Excitation Current Register 1 (address = 06h) [reset = 00h]
          1. Table 32. Excitation Current Register 1 (IDACMAG) Register Field Descriptions
        8. 9.6.1.8  Excitation Current Register 2 (address = 07h) [reset = FFh]
          1. Table 33. Excitation Current Register 2 (IDACMUX) Register Field Descriptions
        9. 9.6.1.9  Sensor Biasing Register (address = 08h) [reset = 00h]
          1. Table 34. Sensor Biasing (VBIAS) Register Field Descriptions
        10. 9.6.1.10 System Control Register (address = 09h) [reset = 10h]
          1. Table 35. System Control (SYS) Register Field Descriptions
        11. 9.6.1.11 Reserved Register (address = 0Ah) [reset = 00h]
          1. Table 36. Reserved Register Field Descriptions
        12. 9.6.1.12 Offset Calibration Register 1 (address = 0Bh) [reset = 00h]
          1. Table 37. Offset Calibration Register 1 (OFCAL0) Register Field Descriptions
        13. 9.6.1.13 Offset Calibration Register 2 (address = 0Ch) [reset = 00h]
          1. Table 38. Offset Calibration Register 2 (OFCAL1) Register Field Descriptions
        14. 9.6.1.14 Reserved Register (address = 0Dh) [reset = 00h]
          1. Table 39. Reserved Register Field Descriptions
        15. 9.6.1.15 Gain Calibration Register 1 (address = 0Eh) [reset = 00h]
          1. Table 40. Gain Calibration Register 1 (FSCAL0) Field Descriptions
        16. 9.6.1.16 Gain Calibration Register 2 (address = 0Fh) [reset = 40h]
          1. Table 41. Gain Calibration Register 2 (FSCAL1) Field Descriptions
        17. 9.6.1.17 GPIO Data Register (address = 10h) [reset = 00h]
          1. Table 42. GPIO Data (GPIODAT) Register Field Descriptions
        18. 9.6.1.18 GPIO Configuration Register (address = 11h) [reset = 00h]
          1. Table 43. GPIO Configuration (GPIOCON) Register Field Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Serial Interface Connections
      2. 10.1.2 Analog Input Filtering
      3. 10.1.3 External Reference and Ratiometric Measurements
      4. 10.1.4 Establishing a Proper Input Voltage
      5. 10.1.5 Unused Inputs and Outputs
      6. 10.1.6 Pseudo Code Example
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Register Settings
      3. 10.2.3 Application Curves
    3. 10.3 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
    2. 11.2 Power-Supply Sequencing
    3. 11.3 Power-On Reset
    4. 11.4 Power-Supply Decoupling
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Noise Performance

Delta-sigma (ΔΣ) analog-to-digital converters (ADCs) are based on the principle of oversampling. The input signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency) and subsequently filtered and decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between modulator frequency and output data rate is called the oversampling ratio (OSR). By increasing the OSR, and thus reducing the output data rate, the noise performance of the ADC can be optimized. In other words, the input-referred noise drops when reducing the output data rate because more samples of the internal modulator are averaged to yield one conversion result. Increasing the gain also reduces the input-referred noise, which is particularly useful when measuring low-level signals.

Table 1 to Table 4 summarize the device noise performance. Table 1 and Table 2 list the ADC measurement noise using the sinc3 digital filter at different data rates and different PGA settings, and Table 3 and Table 4 list the ADC measurement noise using the low-latency digital filter. Data are representative of typical noise performance at TA = 25°C using the internal 2.5-V reference. Data shown are based on 512 consecutive samples from a single device with inputs internally shorted. Table 1 and Table 3 list the input-referred root mean square noise in units of μVRMS for the conditions shown. Note that peak-to-peak (µVPP) values are shown in parentheses. Table 2 and Table 4 list the corresponding data in effective resolution calculated from μVRMS values using Equation 1. Noise-free resolution is calculated from µVPP values using Equation 2.

The input-referred noise (Table 1 and Table 3) only changes marginally when using an external low-noise reference, such as the REF5025. To calculate effective resolution and noise-free resolution when using a reference voltage other than 2.5 V, use Equation 1 and Equation 2:

Equation 1. Effective Resolution = ln[(2 · VREF / Gain) / VRMS-Noise] / ln(2)
Equation 2. Noise-Free Resolution= ln[(2 · VREF / Gain) / VPP-Noise] / ln(2)

Table 5 to Table 8 repeat the measurements of Table 1 to Table 4 but use the global chop feature of the device. The global chop feature averages two measurement of the ADC with the inputs swapped. This feature significantly reduces the input offset of the device, and reduces noise in the measurement.

Noise performance with the PGA bypassed are identical to the noise performance of the device with gain = 1 in Table 1 to Table 8.

Table 1. Noise in μVRMS (μVPP) with Sinc3 Filter,
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Disabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
10 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
16.6 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
20 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
50 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
60 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
100 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
200 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.90)
400 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.5) 0.60 (1.3)
800 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (2.2) 0.60 (2.0)
1000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.5) 1.2 (2.4) 0.60 (2.2)
2000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (4.0) 1.2 (3.5) 0.60 (2.8)
4000 76.3 (95) 38.1 (45) 19.1 (24) 9.5 (13) 4.8 (7.1) 2.4 (5.2) 1.2 (5.0) 0.80 (4.9)

Table 2. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)
with Sinc3 Filter at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,
Global Chop Disabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
10 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
16.6 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
20 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
50 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
60 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
100 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
200 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.3)
400 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.7) 16 (14.9)
800 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.1) 16 (14.3)
1000 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.0) 16 (14.1)
2000 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.3) 16 (14.4) 16 (13.8)
4000 16 (15.7) 16 (15.7) 16 (15.7) 16 (15.6) 16 (15.4) 16 (14.9) 16 (13.9) 16 (13.0)

Table 3. Noise in μVRMS (μVPP) with Low-Latency Filter,
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Disabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
10 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
16.6 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
20 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
50 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
60 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.90)
100 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.4) 0.60 (1.3)
200 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.9) 0.60 (1.7)
400 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.8) 1.2 (2.9) 0.60 (2.3)
800 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (4.0) 1.2 (3.8) 0.60 (3.2)
1000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (5.1) 1.2 (4.3) 0.60 (3.8)
2000 76.3 (83) 38.1 (80) 19.1 (32) 9.5 (17) 4.8 (11) 2.4 (6.7) 1.2 (6.6) 1.0 (6.5)
4000 103 (629) 38.1 (404) 24 (160) 12 (70) 6.4 (39) 3.3 (21) 3.1 (21) 2.6 (20)

Table 4. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)
with Low-Latency Filter, at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,
Global Chop Disabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
10 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
16.6 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
20 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
50 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.5)
60 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.4)
100 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.8) 16 (14.9)
200 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.3) 16 (14.5)
400 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.8) 16 (14.7) 16 (14.0)
800 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.2) 16 (14.3) 16 (13.6)
1000 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.8) 16 (14.9) 16 (14.2) 16 (13.3)
2000 16 (15.9) 16 (14.9) 16 (15.3) 16 (15.2) 16 (14.8) 16 (14.5) 16 (13.5) 15.2 (12.6)
4000 16 (13.0) 16 (12.6) 15.7 (12.9) 16 (13.1) 15.6 (13.0) 15.5 (12.9) 14.4 (11.9) 13.6 (10.9)

Table 5. Noise in μVRMS (μVPP) with Sinc3 Filter,
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Enabled, and Internal 2.5-V Reference

DATA RATE
(SPS)(1)
GAIN
1248163264128
2.5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
10 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
16.6 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
20 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
50 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
60 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
100 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
200 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.75)
400 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.90)
800 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.4) 0.60 (1.3)
1000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.6) 0.60 (1.5)
2000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.5) 1.2 (2.1) 0.60 (2.1)
4000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (5.0) 2.4 (4.0) 1.2 (3.3) 0.60 (3.2)
The actual data conversion period changes with the sinc3 filter and global chop mode enabled; see Table 19 for details.

Table 6. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)
with Sinc3 Filter at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,
Global Chop Enabled, and Internal 2.5-V Reference

DATA RATE
(SPS)(1)
GAIN
1248163264128
2.5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
10 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
16.6 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
20 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
50 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
60 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
100 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
200 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.7)
400 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.4)
800 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.7) 16 (14.9)
1000 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.6) 16 (14.7)
2000 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.9) 16 (15.2) 16 (14.2)
4000 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.9) 16 (15.3) 16 (14.5) 16 (13.6)
The actual data conversion period changes with the sinc3 filter and global chop mode enabled; see Table 19 for details.

Table 7. Noise in μVRMS (μVPP) with Low-Latency Filter,
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Enabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
5 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
10 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
16.6 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
20 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
50 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.60)
60 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.67)
100 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.2) 0.60 (0.80)
200 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.3) 0.60 (1.0)
400 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (1.8) 0.60 (1.7)
800 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.4) 1.2 (2.5) 0.60 (2.3)
1000 76.3 (76.3) 38.1 (38.1) 19.1 (19.1) 9.5 (9.5) 4.8 (4.8) 2.4 (2.8) 1.2 (2.4) 0.60 (2.5)
2000 76.3 (76.3) 38.1 (48) 19.1 (23) 9.5 (13) 4.8 (7.0) 2.4 (5.6) 1.2 (5.2) 0.7 (3.9)
4000 76.3 (275) 38.1 (190) 19.1 (100) 9.5 (55) 4.8 (28) 2.4 (15) 1.2 (13) 2.2 (12)

Table 8. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)
with Low-Latency Filter, at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,
Global Chop Enabled, and Internal 2.5-V Reference

DATA RATE
(SPS)
GAIN
1248163264128
2.5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
5 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
10 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
16.6 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
20 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
50 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
60 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.8)
100 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.6)
200 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.9) 16 (15.2)
400 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.4) 16 (14.5)
800 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (14.9) 16 (14.0)
1000 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (15.8) 16 (15.0) 16 (13.9)
2000 16 (16) 16 (15.7) 16 (15.7) 16 (15.6) 16 (15.4) 16 (14.8) 16 (13.9) 15.9 (13.3)
4000 16 (14.1) 16 (13.7) 16 (13.6) 16 (13.5) 16 (13.4) 16 (13.4) 15.0 (12.7) 14.1 (11.5)