SBAS932
March 2024
DAC39RF10-SEP
,
DAC39RF10-SP
,
DAC39RFS10-SEP
,
DAC39RFS10-SP
PRODMIX
1
1
Features
2
Applications
3
Description
4
Device Comparison
5
Pin Configuration and Functions
6
Specifications
6.1
Absolute Maximum Ratings
6.2
ESD Ratings
6.3
Recommended Operating Conditions
6.4
Thermal Information
6.5
Electrical Characteristics - DC Specifications
6.6
Electrical Characteristics - AC Specifications
6.7
Electrical Characteristics - Power Consumption
6.8
Timing Requirements
6.9
Switching Characteristics
6.10
SPI and FRI Timing Diagrams
6.11
Typical Characteristics: Bandwidth and DC Linearity
6.12
Typical Characteristics: Single Tone Spectra
6.13
Typical Characteristics: Dual Tone Spectra
6.14
Typical Characteristics: Noise Spectral Density
6.15
Typical Characteristics: Power Dissipation and Supply Currents
6.16
Typical Characteristics: Linearity Sweeps
6.17
Typical Characteristics: Modulated Waveforms
6.18
Typical Characteristics: Phase and Amplitude Noise
7
Detailed Description
7.1
Overview
7.2
Functional Block Diagrams
7.3
Feature Description
7.3.1
DAC Output Modes
7.3.1.1
NRZ Mode
7.3.1.2
RTZ Mode
7.3.1.3
RF Mode
7.3.1.4
DES Mode
7.3.2
DAC Core
7.3.2.1
DAC Output Structure
7.3.2.2
Full-Scale Current Adjustment
7.3.3
DEM and Dither
7.3.4
Offset Adjustment
7.3.5
Clocking Subsystem
7.3.5.1
SYSREF Frequency Requirements
7.3.5.2
SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
7.3.6
Digital Signal Processing Blocks
7.3.6.1
Digital Upconverter (DUC)
7.3.6.1.1
Interpolation Filters
7.3.6.1.2
Numerically Controlled Oscillator (NCO)
7.3.6.1.2.1
Phase-Continuous NCO Update Mode
7.3.6.1.2.2
Phase-coherent NCO Update Mode
7.3.6.1.2.3
Phase-sync NCO Update Mode
7.3.6.1.2.4
NCO Synchronization
7.3.6.1.2.4.1
JESD204C LSB Synchonization
7.3.6.1.2.5
NCO Mode Programming
7.3.6.1.3
Mixer Scaling
7.3.6.2
Channel Bonder
7.3.6.3
DES Interpolator
7.3.7
JESD204C Interface
7.3.7.1
Deviation from JESD204C Standard
7.3.7.2
Transport Layer
7.3.7.3
Scrambler and Descrambler
7.3.7.4
Link Layer
7.3.7.5
Physical Layer
7.3.7.6
Serdes PLL Control
7.3.7.7
Serdes Crossbar
7.3.7.8
Multi-Device Synchronization and Deterministic Latency
7.3.7.8.1
Programming RBD
7.3.7.9
Operation in Subclass 0 Systems
7.3.7.10
Link Reset
7.3.8
Alarm Generation
7.4
Device Functional Modes
7.4.1
DUC and DDS Modes
7.4.2
JESD204C Interface Modes
7.4.2.1
JESD204C Interface Modes
7.4.2.2
JESD204C Format Diagrams
7.4.2.2.1
16-bit Formats
7.4.2.2.2
12-bit Formats
7.4.2.2.3
8-bit Formats
7.4.3
NCO Synchronization Latency
7.4.4
Data Path Latency
7.5
Programming
7.5.1
Using the Standard SPI Interface
7.5.1.1
SCS
7.5.1.2
SCLK
7.5.1.3
SDI
7.5.1.4
SDO
7.5.1.5
Serial Interface Protocol
7.5.1.6
Streaming Mode
7.5.2
Using the Fast Reconfiguration Interface
7.5.3
SPI Register Map
8
Application and Implementation
8.1
Application Information
8.1.1
Startup Procedure for DUC/Bypass Mode
8.1.2
Startup Procedure for DDS Mode
8.1.3
Understanding Dual Edge Sampling Modes
8.1.4
Eye Scan Procedure
8.1.5
Pre/Post Cursor Analysis Procedure
8.1.6
Sleep and Disable Modes
8.1.7
Radiation Environment Recommendations
8.1.7.1
SPI Programming
8.1.7.2
JESD204C Reliability
8.1.7.3
NCO Reliability
8.1.7.3.1
NCO Frequency and Phase Correction (Strategy #1)
8.1.7.3.2
NCO Frequency Correction (Strategy No. 2)
8.2
Typical Application
8.2.1
S-Band Radar Transmitter
8.2.2
Design Requirements
8.2.3
Detailed Design Procedure
8.2.4
Detailed Clocking Subsystem Design Procedure
8.2.4.1
Example 1: SWAP-C Optimized
8.2.4.2
Example 2: Improved Phase Noise LMX2820 with External VCO
8.2.4.3
Example 3: Discrete Analog PLL for Best DAC Performance
8.2.4.4
10GHz Clock Generation
8.2.5
Application Curves
8.3
Power Supply Recommendations
8.3.1
Power Up and Down Sequence
8.4
Layout
8.4.1
Layout Guidelines and Example
9
Device and Documentation Support
9.1
Receiving Notification of Documentation Updates
9.2
Support Resources
9.3
Trademarks
9.4
Electrostatic Discharge Caution
9.5
Glossary
10
Revision History
11
Mechanical, Packaging, and Orderable Information
1
Features
Radiation hardness assured DAC39RFx10-SP:
Single event upset (SEU) immune registers
Single-event latch up (SEL): 120MeV-cm
2
/mg
RLAT Total ionizing dose (TID): 300krad (Si)
Radiation tolerant DAC39RFx10-SEP:
Single event upset (SEU) immune registers
Single-event latch up (SEL): 43MeV-cm
2
/mg
RLAT Total ionizing dose (TID): 30krad (Si)
16-bit, 10.4 or 20.8GSPS, multi-Nyquist DAC Cores
Maximum input data rate:
8-bit, Single channel, DES mode: 20.8GSPS
12-bit, Single channel, DES mode: 15.5GSPS
16-bit, Single channel: 10.4GSPS
8-bit, Dual channel, 10.4GSPS
12-bit, Dual channel: 7.75GSPS/ch
16-bit, Dual channel: 6.2GSPS/ch
Output bandwidth (-3dB): 12GHz
Performance at f
OUT
= 2.997GHz, DES2XL mode, DEM/Dither off
Noise floor (small signal): –155dBFS/Hz
SFDR (-0.1dBFS) : 60dBc
IMD3 (-7dBFS each tone) : –62dBc
Additive phase noise, 10kHz offset: -138dBc/Hz
Four Integrated digital up-converters (DUC)
Interpolation: 1x, 2x, 3x, 4x, 6x, 8x, 12x ... 256x
Complex baseband DUC for I/Q output
Complex to real up conversion for dual channel direct RF sampling
64-bit frequency resolution NCOs
JESD204C Interface
Up to 16 Lanes at up to 12.8Gbps
Class C-S, subclass-1 Compatible
Internal AC coupling capacitors
SYSREF Windowing for automatic SYSREF timing calibration
Space screening and assurance:
Meets ASTM E595 outgassing specification
One fabrication, assembly, and test site
Wafer lot traceability
Extended product life cycle
Radiation lot acceptance test (RLAT)
Production burn-in (DAC39RFx10-SP only)