SBASAK4B March   2023  – April 2024 ADS127L21

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements (1.65 V ≤ IOVDD ≤ 2 V)
    7. 5.7  Switching Characteristics (1.65 V ≤ IOVDD ≤ 2 V)
    8. 5.8  Timing Requirements (2 V < IOVDD ≤ 5.5 V)
    9. 5.9  Switching Characteristics (2 V < IOVDD ≤ 5.5 V)
    10. 5.10 Timing Diagrams
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  Offset Error Measurement
    2. 6.2  Offset Drift Measurement
    3. 6.3  Gain Error Measurement
    4. 6.4  Gain Drift Measurement
    5. 6.5  NMRR Measurement
    6. 6.6  CMRR Measurement
    7. 6.7  PSRR Measurement
    8. 6.8  SNR Measurement
    9. 6.9  INL Error Measurement
    10. 6.10 THD Measurement
    11. 6.11 IMD Measurement
    12. 6.12 SFDR Measurement
    13. 6.13 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input (AINP, AINN)
        1. 7.3.1.1 Input Range
      2. 7.3.2 Reference Voltage (REFP, REFN)
        1. 7.3.2.1 Reference Voltage Range
      3. 7.3.3 Clock Operation
        1. 7.3.3.1 Internal Oscillator
        2. 7.3.3.2 External Clock
      4. 7.3.4 Modulator
      5. 7.3.5 Digital Filter
        1. 7.3.5.1 Wideband Filter
          1. 7.3.5.1.1 Wideband Filter Options
          2. 7.3.5.1.2 Sinc5 Filter Stage
          3. 7.3.5.1.3 FIR1 Filter Stage
          4. 7.3.5.1.4 FIR2 Filter Stage
          5. 7.3.5.1.5 FIR3 Filter Stage
          6. 7.3.5.1.6 FIR3 Default Coefficients
          7. 7.3.5.1.7 IIR Filter Stage
            1. 7.3.5.1.7.1 IIR Filter Stability
        2. 7.3.5.2 Low-Latency Filter (Sinc)
          1. 7.3.5.2.1 Sinc3 and Sinc4 Filters
          2. 7.3.5.2.2 Sinc3 + Sinc1 and Sinc4 + Sinc1 Cascade Filter
      6. 7.3.6 Power Supplies
        1. 7.3.6.1 AVDD1 and AVSS
        2. 7.3.6.2 AVDD2
        3. 7.3.6.3 IOVDD
        4. 7.3.6.4 Power-On Reset (POR)
        5. 7.3.6.5 CAPA and CAPD
      7. 7.3.7 VCM Output Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Speed Modes
      2. 7.4.2 Idle Mode
      3. 7.4.3 Standby Mode
      4. 7.4.4 Power-Down Mode
      5. 7.4.5 Reset
        1. 7.4.5.1 RESET Pin
        2. 7.4.5.2 Reset by SPI Register Write
        3. 7.4.5.3 Reset by SPI Input Pattern
      6. 7.4.6 Synchronization
        1. 7.4.6.1 Synchronized Control Mode
        2. 7.4.6.2 Start/Stop Control Mode
        3. 7.4.6.3 One-Shot Control Mode
      7. 7.4.7 Conversion-Start Delay Time
      8. 7.4.8 Calibration
        1. 7.4.8.1 OFFSET2, OFFSET1, OFFSET0 Calibration Registers (Addresses 0Ch, 0Dh, 0Eh)
        2. 7.4.8.2 GAIN2, GAIN1, GAIN0 Calibration Registers (Addresses 0Fh, 10h, 11h)
        3. 7.4.8.3 Calibration Procedure
    5. 7.5 Programming
      1. 7.5.1 Serial Interface (SPI)
        1. 7.5.1.1  Chip Select (CS)
        2. 7.5.1.2  Serial Clock (SCLK)
        3. 7.5.1.3  Serial Data Input (SDI)
        4. 7.5.1.4  Serial Data Output/Data Ready (SDO/DRDY)
        5. 7.5.1.5  SPI Frame
        6. 7.5.1.6  Full-Duplex Operation
        7. 7.5.1.7  Device Commands
          1. 7.5.1.7.1 No-Operation
          2. 7.5.1.7.2 Read Register Command
          3. 7.5.1.7.3 Write Register Command
        8. 7.5.1.8  Read Conversion Data
          1. 7.5.1.8.1 Conversion Data
          2. 7.5.1.8.2 Data Ready
            1. 7.5.1.8.2.1 DRDY
            2. 7.5.1.8.2.2 SDO/DRDY
            3. 7.5.1.8.2.3 DRDY Bit
            4. 7.5.1.8.2.4 Clock Counting
          3. 7.5.1.8.3 STATUS Byte
        9. 7.5.1.9  Daisy-Chain Operation
        10. 7.5.1.10 3-Wire SPI Mode
          1. 7.5.1.10.1 3-Wire SPI Mode Frame Reset
        11. 7.5.1.11 SPI CRC
      2. 7.5.2 Register Memory CRC
        1. 7.5.2.1 Main Program Memory CRC
        2. 7.5.2.2 FIR Filter Coefficient CRC
        3. 7.5.2.3 IIR Filter Coefficient CRC
  9. Register Map
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 SPI Operation
      2. 9.1.2 Input Driver
      3. 9.1.3 Antialias Filter
      4. 9.1.4 Reference Voltage
      5. 9.1.5 Simultaneous-Sampling Systems
    2. 9.2 Typical Applications
      1. 9.2.1 A-Weighting Filter Design
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 PGA855 Programmable Gain Amplifier
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 THS4551 Antialias Filter Design
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

External Clock

For external clock operation, program the CLK_SEL bit to 1b. Apply the clock signal to the CLK pin before programming the bit. A clock divider is available to divide the clock frequency. For example, divide a 25.6MHz clock signal by 8 to produce 3.2MHz internal clock for the low-speed mode.

Decrease the clock frequency to yield specific data rates between OSR values. However, when reducing the clock frequency, the conversion noise is the same as the original clock frequency. Reducing the conversion noise is only possible by increasing the OSR value or changing the filter mode.

Clock jitter results in timing variations when the signal is sampled, leading to degraded SNR performance. A low-jitter clock is essential to meet data sheet SNR performance. For example, with a 200kHz signal frequency, an external clock with <10ps (rms) jitter is required. For lower signal frequencies, the clock jitter requirement is relaxed by –20dB per decade of signal frequency. For example, with fIN = 20kHz, 100ps clock jitter is acceptable. Many types of RC oscillators exhibit high levels of jitter that are to be avoided for ac signal measurement. Instead, use crystal or bulk acoustic wave type oscillators. Avoid ringing on the clock input. A series resistor placed at the output of the clock buffer often helps reduce ringing.