SBASAM0B March   2024  – November 2024 ADS127L18

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  Offset Error Measurement
    2. 6.2  Offset Drift Measurement
    3. 6.3  Gain Error Measurement
    4. 6.4  Gain Drift Measurement
    5. 6.5  NMRR Measurement
    6. 6.6  CMRR Measurement
    7. 6.7  PSRR Measurement
    8. 6.8  SNR Measurement
    9. 6.9  INL Error Measurement
    10. 6.10 THD Measurement
    11. 6.11 IMD Measurement
    12. 6.12 SFDR Measurement
    13. 6.13 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs (AINP, AINN)
        1. 7.3.1.1 Input Range
      2. 7.3.2 Reference Voltage (REFP, REFN)
        1. 7.3.2.1 Reference Voltage Range
      3. 7.3.3 Clock Operation
        1. 7.3.3.1 Clock Dividers
        2. 7.3.3.2 Internal Oscillator
        3. 7.3.3.3 External Clock
      4. 7.3.4 Power-On Reset (POR)
      5. 7.3.5 VCM Output Voltage
      6. 7.3.6 GPIO
      7. 7.3.7 Modulator
      8. 7.3.8 Digital Filter
        1. 7.3.8.1 Wideband Filter
        2. 7.3.8.2 Low-Latency Filter (Sinc)
          1. 7.3.8.2.1 Sinc4 Filter
          2. 7.3.8.2.2 Sinc4 + Sinc1 Cascade Filter
          3. 7.3.8.2.3 Sinc3 Filter
          4. 7.3.8.2.4 Sinc3 + Sinc1 Filter
    4. 7.4 Device Functional Modes
      1. 7.4.1  Reset
        1. 7.4.1.1 RESET Pin
        2. 7.4.1.2 Reset by SPI Register
        3. 7.4.1.3 Reset by SPI Input Pattern
      2. 7.4.2  Idle and Standby Modes
      3. 7.4.3  Power-Down
      4. 7.4.4  Speed Modes
      5. 7.4.5  Synchronization
        1. 7.4.5.1 Synchronized Control Mode
        2. 7.4.5.2 Start/Stop Control Mode
      6. 7.4.6  Conversion-Start Delay Time
      7. 7.4.7  Calibration
        1. 7.4.7.1 Offset Calibration Registers
        2. 7.4.7.2 Gain Calibration Registers
        3. 7.4.7.3 Calibration Procedure
      8. 7.4.8  Data Averaging
      9. 7.4.9  Diagnostics
        1. 7.4.9.1 ERROR Pin and ERR_FLAG Bit
        2. 7.4.9.2 SPI CRC
        3. 7.4.9.3 Register Map CRC
        4. 7.4.9.4 ADC Error
        5. 7.4.9.5 SPI Address Range
        6. 7.4.9.6 SCLK Counter
        7. 7.4.9.7 Clock Counter
        8. 7.4.9.8 Frame-Sync CRC
        9. 7.4.9.9 Self Test
      10. 7.4.10 Frame-Sync Data Port
        1. 7.4.10.1  Data Packet
        2. 7.4.10.2  Data Format
        3. 7.4.10.3  STATUS_DP Header Byte
        4. 7.4.10.4  FSYNC Pin
        5. 7.4.10.5  DCLK Pin
        6. 7.4.10.6  DOUTx Pins
        7. 7.4.10.7  DINx Pins
        8. 7.4.10.8  Time Division Multiplexing
        9. 7.4.10.9  Daisy Chain
        10. 7.4.10.10 DOUTx Timing
    5. 7.5 Programming
      1. 7.5.1 Hardware Programming
      2. 7.5.2 SPI Programming
        1. 7.5.2.1 Chip Select (CS)
        2. 7.5.2.2 Serial Clock (SCLK)
        3. 7.5.2.3 Serial Data Input (SDI)
        4. 7.5.2.4 Serial Data Output (SDO)
      3. 7.5.3 SPI Frame
      4. 7.5.4 Commands
        1. 7.5.4.1 Write Register Command
        2. 7.5.4.2 Read Register Command
      5. 7.5.5 SPI Daisy-Chain
  9. Register Map
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Driver
      2. 9.1.2 Antialias Filter
      3. 9.1.3 Reference Voltage
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 AVDD1 and AVSS
      2. 9.3.2 AVDD2
      3. 9.3.3 IOVDD
      4. 9.3.4 CAPA and CAPD
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Detailed Design Procedure

The antialias filter consists of a passive first-order input filter, an active second-order filter, and a passive first-order output filter. The filter is fourth-order overall. The filter design accommodates the worst-case wideband filter OSR value (32). This worst-case value results in less than two decades of frequency range between the Nyquist frequency at fDATA and the fMOD frequency. The fourth-order filter provides 90dB roll-off over this frequency range. The roll-off at fMOD is the key requirement of the filter.

The THS4551 amplifier is selected for the active filter stage because of the 135MHz gain-bandwidth product and 50ns settling time. The amplifier GBP is sufficient to maintain flat passband response and stable filter roll-off at 12.8MHz. A 10MHz amplifier used with gain has marginal GBP to fully support the required roll-off at the fMOD frequency.

The design of the active filter section begins with an equal-R assumption to reduce the number of component values to select. The dc gain of the filter is R3 / (R1 + R2). The 1kΩ resistors are low enough in value to keep resistor noise and amplifier input current noise from affecting the noise of the ADC.

The 1kΩ input resistor is divided into two 499Ω resistors (R1 and R2) to implement the first-order filter using C1. The first-order filter is decoupled from the second-order active filter, but shares R1 and R2 to determine each filter stage corner frequency. The corner frequency is given by C1 and the Thevenin resistance at the terminals of C1 (RTH = 2 × 250Ω).

Assuming an arbitrary selection for R4 (2 × 499Ω) is used for this design. Calculate the values of the 2 × 180pF (C3) feedback capacitors and the single 330pF differential capacitor (C2). These values are calculated by the filter design equations given in the Design Methodology for MFB Filters in ADC Interface Applications application note. The design inputs are filter fO and filter Q for the multiple-feedback active-filter topology. The differential capacitor (C4) is not part of the filter design but improves filter phase margin. The 5Ω resistors (R5) isolate the amplifier outputs from stray capacitance to further improve filter phase margin.

The final RC filter at the ADC inputs serves two purposes. First, the filter provides a fourth pole to the overall filter response, thereby increasing roll-off. The other purpose of the RC filter at the inputs is a charge reservoir to filter the sampled input of the ADC. The charge reservoir reduces the instantaneous charge demand of the amplifier, maintaining low distortion and low gain error that otherwise degrades from incomplete amplifier settling. The input filter values are 2 × 22Ω and 2.2nF. The 22Ω resistors are outside the THS4551 filter loop to isolate the amplifier outputs from the 2.2nF capacitor to maintain phase margin.

Low voltage-coefficient C0G capacitors are used everywhere in the signal path for the low distortion properties. The amplifier gain resistors are 0.1% tolerance to provide best possible THD performance. The ADC VCM output connection to the amplifier VOCM input pin is optional because the same function is provided by the amplifier.

See the THS4551 data sheet for additional examples of active filter design and applications.