SBAU447 May   2024

 

  1.   1
  2.   Description
  3.   Get Started
  4.   Features
  5.   Applications
  6.   6
  7. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
  8. 2Hardware
    1. 2.1 EVM Coupon Locations and Descriptions
    2. 2.2 EVM Assembly Instructions
    3. 2.3 Interfaces
      1. 2.3.1 Analog Input
      2. 2.3.2 Amplifier Output
        1. 2.3.2.1 Differential Output
        2. 2.3.2.2 Single-Ended Output, Fixed Gain
        3. 2.3.2.3 Single-Ended Output, Ratiometric Gain
      3. 2.3.3 Modulator Output
        1. 2.3.3.1 Internal Clock
        2. 2.3.3.2 External Clock
    4. 2.4 Power Supplies
      1. 2.4.1 VDD1/AVDD Input
      2. 2.4.2 VDD2/DVDD Input
    5. 2.5 EVM Operation
      1. 2.5.1 Analog Input and VDD1/AVDD Power
      2. 2.5.2 Outputs and VDD2/DVDD Power
      3. 2.5.3 Test Procedure
        1. 2.5.3.1 Equipment Setup
        2. 2.5.3.2 Procedure
  9. 3Hardware Design Files
    1. 3.1 Schematics
    2. 3.2 PCB Layout
    3. 3.3 Bill of Materials
  10. 4Additional Information
    1. 4.1 Trademarks
  11. 5Related Documentation

Differential Output

DIYAMC-0-EVM Differential Output
                    Circuit Figure 2-3 Differential Output Circuit

Figure 3-3 shows the example differential output circuit for the DIYAMC-0-EVM.

Row 1 of the EVM provides a differential analog output. Using Coupon A1 as an example, the output is accessible to the user by connector J2. The passive components of the input include R2, R4, and C6 to make a differential anti-aliasing filter with a cutoff frequency of 796kHz, and C9 and C10 to help attenuate common-mode signals. C3 and C4 serve as decoupling capacitors for noise reduction and low-side supply (VDD2) stability.

Using an oscilloscope, the user can observe the differential output signal between J2.2 (VOUTP) and J2.3 (VOUTN) or single-ended with respect to J2.4 (GND2).