SBOA233A January   2019  – October 2024 INA326 , OPA333

 

  1.   1
  2.   2
  3.   Trademarks

Design Goals

Input Output Supply Load Resistance (RL)
ViMin ViMax ILMin ILMax Vcc Vee RLMin RLMax
0.49V 4.9V 1µA 10µA 5V 0V 390kΩ

Design Description

This circuit delivers a precise low-level current, IL, to a load, RL. The design operates on a single 5V supply and uses one precision low-drift op amp and one instrumentation amplifier. Simple modifications can change the range and accuracy of the voltage-to-current (V-I) converter.

Design Notes

  1. Voltage compliance is dominated by op amp linear output swing (see data sheet AOL test conditions) and instrumentation amplifier linear output swing. See the Analog engineer's calculator for more information.
  2. Voltage compliance, along with RLMin, RLMax, and Rset bound the IL range.
  3. Check op amp and instrumentation amplifier input common-mode voltage range.
  4. Stability analysis must be done to choose R4 and C1 for stable operation.
  5. Loop stability analysis to select R4 and C1 are different for each design. The compensation shown is only valid for the resistive load ranges used in this design. Other types of loads, op amps, or instrumentation amplifiers, or both will require different compensation. See the Design References section for more op amp stability resources.

Design Steps

  1. Select Rset and check ILMin based on voltage compliance.
    I LMax = V oOPAMax R set + R LMax
    10 μA = 4.9 V R set + 390 R set = 100
    I LMin = V oOPAMin R set + R LMin
    I LMin = 0.1 V 100 + 0 Ω = 1 μA
  2. Compute instrumentation amplifier gain, G.
    V setMin = I LMin × R set = 1 μA × 100 = 0.1 V
    V setMax = I LMax × R set = 10 μA × 100 = 1 V
    G = V iMax - V iMin V setMax - V setMin
    G = 4.9 V - 0.49 V 1 V - 0.1 V = 4 . 9
  3. Choose R1 for INA326 instrumentation amplifier gain, G. Use data sheet recommended R2 = 200kΩ and C2 = 510pF.
    G = 2 × R 2 R 1
    R 1 = 2 × R 2 G
    R 1 = 2 × 200 4 . 9 = 81.6327 81.6
  4. The final transfer function of the circuit follows:
    I L = V i G × R set
    I L = V i 4 . 9 × 100 = V i 490
    V i = 0.49 V I L = 1 μA
    V i = 4.9 V I L = 10 μA

Design Simulations

DC Simulation Results

Vi RL IL VoOPA VoOPA Compliance VoINA VoINA Compliance
0.49V 0.999627µA 99.982723mV 100mV to 4.9V 490.013346mV 75mV to 4.925V
0.49V 390kΩ 0.999627µA 489.837228mV 100mV to 4.9V 490.013233mV 75mV to 4.925V
4.9V 9.996034µA 999.623352mV 100mV to 4.9V 4.900016V 75mV to 4.925V
4.9V 390kΩ 9.996031µA 4.898075V 100mV to 4.9V 4.900015V 75mV to 4.925V

Design References

Texas Instruments, SBOMAT8 TINA-TI™ circuit simulation, file download

Texas Instruments, Low-Level V-to-I Converter Reference Design, 0V to 5V Input and 0µA to 5µA Output, product page

Texas Instruments, Solving Op Amp Stability Issues, E2ETM amplifiers forum

Design Featured Op Amp

OPA333
Vss 1.8V to 5.5V
VinCM Rail-to-rail
Vout Rail-to-rail
Vos 2µV
Iq 17µA/Ch
Ib 70pA
UGBW 350kHz
SR 0.16V/µs
#Channels 1 and 2
OPA333

Design Featured Instrumentation Amplifier

INA326
Vss 2.7V to 5.5V
VinCM Rail-to-rail
Vout Rail-to-rail
Vos 20µV
Iq 2.4mA
Ib 0.2nA
UGBW 1kHz (set by 1kHz filter)
SR 0.012V/µs (set by 1kHz filter)
#Channels 1
INA326